Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Direct ; 6(2): e384, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35146239

RESUMEN

Quinoa is a popular seed crop, often consumed for its high nutritional quality. We studied how heat stress in the roots or the shoots of quinoa plants affected the concentrations of 20 elements (aluminum, arsenic, boron, calcium, cadmium, cobalt, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorous, rubidium, sulfur, selenium, strontium, and zinc) in quinoa seed. Elemental concentrations in quinoa seed were significantly changed after an 11-day heat treatment during anthesis. The type of panicle (main, secondary, and tertiary) sampled and the type of heat treatment (root only, shoot only, or whole plants) significantly affected elemental profiles in quinoa seed. Plants were also divided into five sections from top to bottom to assess the effect of panicle position on seed elemental profiles. Plant section had an effect on the concentrations of arsenic, iron, and sodium under control conditions and on copper with heat treatment. Overall, the time of panicle development in relation to the time of heat exposure had the largest effect on seed elemental concentrations. Interestingly, the quinoa plants were exposed to heat only during anthesis of the main panicle, but the elemental concentrations of seeds produced after heat treatment ended were still significantly changed, indicating that heat stress has long-lasting effects on quinoa plants. These findings demonstrate how the nutritional quality of quinoa seeds can be changed significantly even by relatively short heat spells.

2.
Plant J ; 102(5): 1058-1073, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31971639

RESUMEN

Increasing global temperatures and a growing world population create the need to develop crop varieties that provide higher yields in warmer climates. There is growing interest in expanding quinoa cultivation, because of the ability of quinoa to produce nutritious grain in poor soils, with little water and at high salinity. The main limitation to expanding quinoa cultivation, however, is the susceptibility of quinoa to temperatures above approximately 32°C. This study investigates the phenotypes, genes and mechanisms that may affect quinoa seed yield at high temperatures. Using a differential heating system where only roots or only shoots were heated, quinoa yield losses were attributed to shoot heating. Plants with heated shoots lost 60-85% yield as compared with control plants. Yield losses were the result of lower fruit production, which lowered the number of seeds produced per plant. Furthermore, plants with heated shoots had delayed maturity and greater non-reproductive shoot biomass, whereas plants with both heated roots and heated shoots produced higher yields from the panicles that had escaped the heat, compared with the control. This suggests that quinoa uses a type of avoidance strategy to survive heat. Gene expression analysis identified transcription factors differentially expressed in plants with heated shoots and low yield that had been previously associated with flower development and flower opening. Interestingly, in plants with heated shoots, flowers stayed closed during the day while the control flowers were open. Although a closed flower may protect the floral structures, this could also cause yield losses by limiting pollen dispersal, which is necessary to produce fruit in the mostly female flowers of quinoa.


Asunto(s)
Chenopodium quinoa/metabolismo , Frutas/metabolismo , Brotes de la Planta/metabolismo , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...