Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565288

RESUMEN

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Ratones Endogámicos C57BL , Transducción de Señal , Canales Catiónicos TRPM , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Masculino , Ratones , Canales Catiónicos TRPM/metabolismo , Transducción de Señal/fisiología , Isquemia Encefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Receptores de GABA-A/metabolismo , Hipocampo/metabolismo , Inhibición Neural/fisiología , Neuronas GABAérgicas/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/metabolismo
2.
Matrix Biol ; 125: 88-99, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135163

RESUMEN

Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Glicosaminoglicanos , Animales , Humanos , Ratones , Lesiones Traumáticas del Encéfalo/genética , Sulfatos de Condroitina , Decorina/genética , Proteínas de la Matriz Extracelular , Glicosaminoglicanos/química
3.
iScience ; 26(10): 108061, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860758

RESUMEN

Synaptic inhibition is critical for controlling neuronal excitability and function. During global cerebral ischemia (GCI), inhibitory synapses are rapidly eliminated, causing hyper-excitability which contributes to cell-death and the pathophysiology of disease. Sequential disassembly of inhibitory synapses begins within minutes of ischemia onset: GABAARs are rapidly trafficked away from the synapse, the gephyrin scaffold is removed, followed by loss of the presynaptic terminal. GABAARs are endocytosed during GCI, but how this process accompanies synapse disassembly remains unclear. Here, we define the precise trafficking itinerary of GABAARs during the initial stages of GCI, placing them in the context of rapid synapse elimination. Ischemia-induced GABAAR internalization quickly follows their initial dispersal from the synapse, and is controlled by PP1α signaling. During reperfusion injury, GABAARs are then trafficked to lysosomes for degradation, leading to permanent removal of synaptic GABAARs and contributing to the profound reduction in synaptic inhibition observed hours following ischemia onset.

4.
Shock ; 60(4): 585-593, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548929

RESUMEN

ABSTRACT: The Earth's population is aging, and by 2050, one of six people will be 65 years or older. Therefore, proper treatment of injuries that disproportionately impact people of advanced age will be more important. Clinical studies reveal people 65 years or older account for 16.5% of all burn injuries and experience higher morbidity, including neurocognitive decline, and mortality that we and others believe are mediated, in part, by heightened intestinal permeability. Herein, we used our clinically relevant model of scald burn injury in young and aged mice to determine whether age and burn injury cooperate to induce heightened colonic damage, alterations to the fecal microbiome, and whether resultant changes in the microbiome correlate with neuroinflammation. We found that aged, burn-injured mice have an increase in colonic lymphoid aggregates, inflammation, and proinflammatory chemokine expression when compared with young groups and sham-injured aged mice. We then performed fecal microbiota sequencing and found a striking reduction in gut protective bacterial taxa, including Akkermansia , in the aged burn group compared with all other groups. This reduction correlated with an increase in serum fluorescein isothiocyanate-Dextran administered by gavage, indicating heightened intestinal permeability. Furthermore, loss of Akkermansia was highly correlated with increased messenger RNA expression of neuroinflammatory markers in the brain, including chemokine ligand 2, TNF-α, CXC motif ligand 1, and S100 calcium-binding protein A8. Finally, we discovered that postburn alterations in the microbiome correlated with measures of strength in all treatment groups, and those that performed better on the rotarod and hanging wire tests had higher abundance of Akkermansia than those that performed worse. Taken together, these findings indicate that loss of protective bacteria after burn injury in aged mice contributes to alterations in the colon, gut leakiness, neuroinflammation, and strength. Therefore, supplementation of protective bacteria, such as Akkermansia , after burn injury in aged patients may have therapeutic benefit.


Asunto(s)
Quemaduras , Microbiota , Humanos , Anciano , Enfermedades Neuroinflamatorias , Disbiosis/microbiología , Ligandos , Quemaduras/microbiología , Bacterias/genética , Quimiocinas , Colon
5.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292810

RESUMEN

Thalamocortical (TC) neurons within the ventrolateral thalamus (VL) receive projections from the cerebellum and the basal ganglia (BG) to facilitate motor and non-motor functions. Tonic and rebound firing patterns in response to excitatory cerebellar and inhibitory BG inputs, respectively, are a canonical feature of TC neurons and plays a key role in signal processing. The intrinsic excitability of TC neurons has a strong influence on how they respond to synaptic inputs, however, it is unknown whether their afferents influence their firing properties. Understanding the input-specific firing patterns could shed light into movement disorders with cerebellar or BG involvement. Here, we used whole-cell electrophysiology in brain slices from C57BL/6 mice to investigate the firing of TC neurons with optogenetic confirmation of cerebellar or BG afferents. TC neurons with cerebellar afferents exhibited higher tonic and rebound firing rates than those with BG afferents. This increased firing was associated with faster action potential depolarization kinetics and a smaller afterhyperpolarization potential. We also found differences in the passive membrane properties and sag currents during hyperpolarization. Despite higher rebound firing in TC neurons with cerebellar afferents, there were no differences in T-type calcium channel function compared to those with BG inputs. These data suggest input-specific differences in sodium and SK, but not T-type calcium channels, impact firing properties in TC populations. Altogether, we showed that the pronounced divergence observed in TC neuron firing properties correlate with its heterogeneous anatomical connectivity, which could signify a distinct signal integration and processing by these neurons. Keypoints: Thalamocortical neurons in the VL with cerebellar afferents have higher intrinsic tonic and rebound firing properties than those with basal ganglia afferents.Membrane resistance and action potential depolarization slope were different based on the presence of cerebellar afferents.Despite elevated rebound burst firing, T-type mediated currents did not correlate with increased firing in neurons with cerebellar afferents.

6.
Exp Biol Med (Maywood) ; 248(7): 641-655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37309741

RESUMEN

General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Humanos , Niño , Animales , Ratas , Ratones , Sevoflurano/toxicidad , Sevoflurano/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacología , Animales Recién Nacidos , Anestésicos por Inhalación/toxicidad , Éteres Metílicos/toxicidad , Hipocampo/metabolismo
7.
J Cereb Blood Flow Metab ; 43(2_suppl): 66-77, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37150606

RESUMEN

Post-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aß), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients. In this study, we use the transient middle cerebral artery occlusion (MCAo) model in young adult mice to evaluate if a large vessel stroke increases brain soluble Aß levels. We show that soluble Aß40 and Aß42 levels are increased in the ipsilateral hippocampus in MCAo mice 7 days after the injury. We also analyze the level and activity of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), an enzyme that generates Aß in the brain, and observe that BACE1 activity is increased in the ipsilateral hippocampus of the MCAo mice. Finally, we highlight that treatment of MCAo mice with a BACE1 inhibitor during the recovery period rescues stroke-induced deficits in hippocampal synaptic plasticity. These findings support a molecular pathway linking ischemia to alterations in BACE1-mediated production of Aß, and encourage future studies that evaluate whether targeting BACE1 activity improves the cognitive deficits seen with PSCID.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas , Accidente Cerebrovascular Isquémico/metabolismo , Hipocampo/metabolismo , Modelos Teóricos
8.
J Biol Chem ; 299(5): 104693, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037305

RESUMEN

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Memoria , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Memoria/fisiología , Neuronas/metabolismo , Fosforilación/fisiología , Porcinos , Péptidos/farmacología
9.
Glia ; 71(6): 1429-1450, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794545

RESUMEN

Neonatal stroke is common and causes life-long motor and cognitive sequelae. Because neonates with stroke are not diagnosed until days-months after the injury, chronic targets for repair are needed. We evaluated oligodendrocyte maturity and myelination and assessed oligodendrocyte gene expression changes using single cell RNA sequencing (scRNA seq) at chronic timepoints in a mouse model of neonatal arterial ischemic stroke. Mice underwent 60 min of transient right middle cerebral artery occlusion (MCAO) on postnatal day 10 (p10) and received 5-ethynyl-2'-deoxyuridine (EdU) on post-MCAO days 3-7 to label dividing cells. Animals were sacrificed 14 and 28-30 days post-MCAO for immunohistochemistry and electron microscopy. Oligodendrocytes were isolated from striatum 14 days post-MCAO for scRNA seq and differential gene expression analysis. The density of Olig2+ EdU+ cells was significantly increased in ipsilateral striatum 14 days post-MCAO and the majority of oligodendrocytes were immature. Density of Olig2+ EdU+ cells declined significantly between 14 and 28 days post-MCAO without a concurrent increase in mature Olig2+ EdU+ cells. By 28 days post-MCAO there were significantly fewer myelinated axons in ipsilateral striatum. scRNA seq identified a cluster of "disease associated oligodendrocytes (DOLs)" specific to the ischemic striatum, with increased expression of MHC class I genes. Gene ontology analysis suggested decreased enrichment of pathways involved in myelin production in the reactive cluster. Oligodendrocytes proliferate 3-7 days post-MCAO and persist at 14 days, but fail to mature by 28 days. MCAO induces a subset of oligodendrocytes with reactive phenotype, which may be a therapeutic target to promote white matter repair.


Asunto(s)
Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular , Ratones , Animales , Infarto de la Arteria Cerebral Media/complicaciones , Animales Recién Nacidos , Accidente Cerebrovascular/complicaciones , Oligodendroglía , Vaina de Mielina
10.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747773

RESUMEN

The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. This was at ≥500fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce return of spontaneous circulation. Of additional importance for therapeutic development, cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, even though prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.

11.
Neurobiol Dis ; 175: 105923, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371060

RESUMEN

Preclinical models demonstrate that nearly all anesthetics cause widespread neuroapoptosis in the developing brains of infant rodents and non-human primates. Anesthesia-induced developmental apoptosis is succeeded by prolonged neuropathology in the surviving neurons and lasting cognitive impairments, suggesting that anesthetics interfere with the normal developmental trajectory of the brain. However, little is known about effects of anesthetics on stereotyped axonal pruning, an important developmental algorithm that sculpts neural circuits for proper function. Here, we proposed that neonatal ketamine exposure may interfere with stereotyped axonal pruning of the infrapyramidal bundle (IPB) of the hippocampal mossy fiber system and that impaired pruning may be associated with alterations in the synaptic transmission of CA3 neurons. To test this hypothesis, we injected postnatal day 7 (PND7) mouse pups with ketamine or vehicle over 6 h and then studied them at different developmental stages corresponding to IPB pruning (PND20-40). Immunohistochemistry with synaptoporin (a marker of mossy fibers) revealed that in juvenile mice treated with ketamine at PND7, but not in vehicle-treated controls, positive IPB fibers extended farther into the stratum pyramidale of CA3 region. Furthermore, immunofluorescent double labeling for synaptoporin and PSD-95 strongly suggested that the unpruned IPB caused by neonatal ketamine exposure makes functional synapses. Importantly, patch-clamp electrophysiology for miniature excitatory postsynaptic currents (mEPSCs) in acute brain slices ex vivo revealed increased frequency and amplitudes of mEPSCs in hippocampal CA3 neurons in ketamine-treated groups when compared to vehicle controls. We conclude that neonatal ketamine exposure interferes with normal neural circuit development and that this interference leads to lasting increase in excitatory synaptic transmission in hippocampus.


Asunto(s)
Anestésicos , Ketamina , Ratones , Animales , Ketamina/toxicidad , Transmisión Sináptica/fisiología , Hipocampo , Sinapsis/fisiología , Fibras Musgosas del Hipocampo , Anestésicos/farmacología
12.
Exp Gerontol ; 169: 111975, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36208823

RESUMEN

BACKGROUND: By 2050, one in six people globally will be 65 or older. Confusion and delirium are significant complications after burn injury, especially in the elderly population. The etiology is still unknown, however complications may be driven by pro-inflammatory activation of astrocytes within the hippocampus (HPC) after burn injury. Reduced levels of phosphorylated cyclic-AMP response binding element (pCREB), caused by elevated systemic pro-inflammatory cytokines, could lead to cognitive decline and memory impairment. METHODS: To examine the effects of remote injury on neuroinflammation in advanced age, young and aged mice were subjected to a 15 % total body surface area scald burn or sham injury, and euthanized after 24 h. Expression of ccl2 and tnfa were measured by qPCR in the whole brain and HPC. Astrocyte activation was measured by immunofluorescence within the HPC. pCREB was measured by immunohistochemistry in the dentate gyrus. RESULTS: We saw an 80-fold increase in ccl2 and a 30-fold elevation in tnfa after injury in the whole brain of aged mice compared to young groups and aged sham mice (p < 0.05 and p < 0.05, respectively). Additionally, there was a 30-fold increase in ccl2 within isolated HPC of aged injured mice when compared to sham injured animals (p < 0.05). When investigating specific HPC regions, immunofluorescence staining showed a >20 % rise in glial fibrillary acidic protein (GFAP) positive astrocytes within the cornu ammonis 3 (CA3) of aged injured mice when compared to all other groups (p < 0.05). Lastly, we observed a >20 % decrease in pCREB staining by immunohistochemistry in the dentate gyrus of aged mice compared to young regardless of injury (p < 0.05). CONCLUSIONS: These novel data suggest that remote injury in aged, but not young, mice is associated with neuroinflammation and astrocyte activation within the HPC. These factors, paired with an age related reduction in pCREB, could help explain the increased cognitive decline seen in burn patients of advanced age. To our knowledge, we are the first group to examine the impact of advanced age combined with burn injury on inflammation and astrocyte activation within the brain.


Asunto(s)
Factores de Edad , Astrocitos , Quemaduras , Animales , Ratones , Astrocitos/metabolismo , Quemaduras/complicaciones , Quemaduras/metabolismo , Hipocampo/metabolismo , Enfermedades Neuroinflamatorias
13.
Br J Anaesth ; 129(4): 555-566, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35701270

RESUMEN

BACKGROUND: General anaesthesia in the neonatal period has detrimental effects on the developing mammalian brain. The impact of underlying inflammation on anaesthesia-induced developmental neurotoxicity remains largely unknown. METHODS: Postnatal day 7 (PND7) rats were randomly assigned to receive sevoflurane (3 vol% for 3 h) or carrier gas 12 h after bacterial lipopolysaccharide (LPS; 1 µg g-1) or vehicle injection. Pharmacological inhibition of caspase-1 by Vx-765 (two doses of 50 µg g-1 body weight) was used to investigate mechanistic pathways of neuronal injury. Histomorphological injury and molecular changes were quantified 2 h after the end of anaesthesia. Long-term functional deficits were tested at 5-8 weeks of age using a battery of behavioural tests in the memory and anxiety domains. RESULTS: Sevoflurane or LPS treatment increased activated caspase-3 and caspase-9 expression in the hippocampal subiculum and CA1, which was greater when sevoflurane was administered in the setting of LPS-induced inflammation. Neuronal injury induced by LPS+sevoflurane treatment resulted in sex-specific behavioural outcomes when rats were tested at 5-8 weeks of age, including learning and memory deficits in males and heightened anxiety-related behaviour in females. Hippocampal caspase-1 and NLRP1 (NLR family pyrin domain containing 1), but not NLRP3, were upregulated by LPS or LPS+sevoflurane treatment, along with related proinflammatory cytokines, interleukin (IL)-1ß, and IL-18. Pretreatment with Vx-765, a selective caspase-1 inhibitor, led to reduced IL-1ß in LPS and LPS+sevoflurane groups. Caspase-1 inhibition by Vx-765 significantly decreased activated caspase-3 and caspase-9 immunoreactivity in the subiculum. CONCLUSIONS: Systemic inflammation promotes developmental neurotoxicity by worsening anaesthesia-induced neuronal damage with sex-specific behavioural outcomes. This highlights the importance of studying anaesthesia-induced neurotoxicity in more clinically relevant settings.


Asunto(s)
Lipopolisacáridos , Síndromes de Neurotoxicidad , Animales , Animales Recién Nacidos , Caspasa 1 , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Citocinas/metabolismo , Inflamación/inducido químicamente , Interleucina-18/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Mamíferos/metabolismo , Síndromes de Neurotoxicidad/etiología , Ratas , Sevoflurano/toxicidad
14.
Neurobiol Dis ; 168: 105701, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337949

RESUMEN

Neurological symptoms following cerebellar stroke can range from motor to cognitive-affective impairments. Topographic imaging studies from patients with lesions confined to the cerebellum have shown evidence linking anterior cerebellar lobules with motor function and posterior lobules with cognitive function. Damage to the cerebellum can disrupt functional connectivity in cerebellar stroke patients, as it is highly interconnected with forebrain motor and cognitive areas. The hippocampus plays a key role in memory acquisition, a cognitive domain that is negatively impacted by posterior cerebellar stroke, and there is increasing evidence that the cerebellum can affect hippocampal function in health and disease. To study these topographical dissociations, we developed a mouse photo-thrombosis model to produce unilateral strokes in anterior (lobules III-V) or posterior (lobules VI-VIII) cerebellar cortex to examine hippocampal plasticity and behavior. Histological and MRI data demonstrate reproducible injury that is confined to the targeted lobules. We then measured hippocampal long-term potentiation (LTP) ex-vivo with extracellular field recording experiments in acute brain slices obtained from mice 7 days post-cerebellar stroke. Interestingly, we found that a unilateral posterior stroke resulted in a contralateral hippocampal impairment, matching the cerebellothalamic pathway trajectory, while LTP was intact in both hippocampi of mice with anterior strokes. We also assessed motor coordination and memory function at 7 days post-stroke using a balance beam, contextual and delay fear conditioning (CFC and DFC), and novel object recognition (NOR) tasks. Mice with anterior strokes showed lack of coordination evaluated as an increased number of missteps, while mice with posterior strokes did not. Mice with anterior or posterior cerebellar strokes demonstrated similar freezing behavior to shams in CFC and DFC, while only posterior stroke mice displayed a reduced discrimination index in the NOR task. These data suggest that a unilateral LTP impairment observed in mice with posterior strokes produces a mild memory impairment. Our results demonstrate that our model recapitulates aspects of clinical lesion-symptom mapping, with anterior cerebellar strokes producing impaired motor coordination and posterior cerebellar strokes producing an object-recognition memory impairment. Further studies are warranted to interrogate other motor and cognitive-affective behaviors and brain region specific alterations following focal cerebellar stroke. The novel model presented herein will allow for future preclinical translational studies to improve neurological deficits after cerebellar stroke.


Asunto(s)
Enfermedades Cerebelosas , Accidente Cerebrovascular , Animales , Enfermedades Cerebelosas/patología , Enfermedades Cerebelosas/psicología , Cerebelo/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
15.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163060

RESUMEN

Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.


Asunto(s)
Anestésicos/toxicidad , Desarrollo Infantil/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Animales , Niño , Epigénesis Genética , Humanos , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/metabolismo
16.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163810

RESUMEN

Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.


Asunto(s)
Anestésicos Generales/efectos adversos , Red Nerviosa/efectos de los fármacos , Trastornos Neurocognitivos/inducido químicamente , Animales , Niño , Modelos Animales de Enfermedad , Humanos , Trastornos Neurocognitivos/psicología
17.
Cell Rep ; 37(12): 110142, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936876

RESUMEN

GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABAARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
Neural Plast ; 2021: 8774663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659399

RESUMEN

Hippocampal cell death and cognitive dysfunction are common following global cerebral ischemia across all ages, including children. Most research has focused on preventing neuronal death. Restoration of neuronal function after cell death is an alternative approach (neurorestoration). We previously identified transient receptor potential M2 (TRPM2) ion channels as a potential target for acute neuroprotection and delayed neurorestoration in an adult CA/CPR mouse model. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in juvenile (p20-25) mice was used to investigate the role of ion TRPM2 channels in neuroprotection and ischemia-induced synaptic dysfunction in the developing brain. Our novel TRPM2 inhibitor, tatM2NX, did not confer protection against CA1 pyramidal cell death but attenuated synaptic plasticity (long-term plasticity (LTP)) deficits in both sexes. Further, in vivo administration of tatM2NX two weeks after CA/CPR reduced LTP impairments and restored memory function. These data provide evidence that pharmacological synaptic restoration of the surviving hippocampal network can occur independent of neuroprotection via inhibition of TRPM2 channels, providing a novel strategy to improve cognitive recovery in children following cerebral ischemia. Importantly, these data underscore the importance of age-appropriate models in disease research.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Recuperación de la Función/fisiología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/fisiología , Factores de Edad , Animales , Isquemia Encefálica/fisiopatología , Reanimación Cardiopulmonar/métodos , Femenino , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Recuperación de la Función/efectos de los fármacos
19.
J Control Release ; 338: 505-526, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450196

RESUMEN

We have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures. Gene ontology and pathway enrichment analysis of EVs revealed a very high association to glycolysis-related processes. In comparison to heterotypic macrophage-derived EVs, BEC-derived EVs demonstrated a greater selectivity to transfer mitochondria and increase endothelial cell survival under ischemic conditions.


Asunto(s)
Micropartículas Derivadas de Células , Vesículas Extracelulares , Animales , Encéfalo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Mitocondrias
20.
Br J Anaesth ; 124(5): 603-613, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151384

RESUMEN

BACKGROUND: The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS: The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS: CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS: The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Hipnóticos y Sedantes/toxicidad , Pregnanodionas/toxicidad , Esteroides/toxicidad , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Relación Dosis-Respuesta a Droga , Agonistas de Receptores de GABA-A/administración & dosificación , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores de GABA-A/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipocampo/patología , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/patología , Pregnanodionas/administración & dosificación , Pregnanodionas/farmacología , Propofol/administración & dosificación , Propofol/farmacología , Propofol/toxicidad , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Esteroides/administración & dosificación , Esteroides/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...