Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118513, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418917

RESUMEN

The assessment of waste ecotoxicity (hazardous property HP14 in the European Union) is fundamental for proper waste classification and safe application/disposal. Biotests are relevant for evaluating waste complex matrices, but their efficiency is crucial to encourage their adoption at the industrial level. This work aims at evaluating possibilities of improving the efficiency of a biotest battery previously suggested in the literature, regarding test selection, duration, and/or laboratory resources optimization. Fresh incineration bottom ash (IBA) was the case study. The test battery analysed included standard aquatic (bacteria, microalgae, macrophytes, daphnids, rotifers, fairy shrimp) and terrestrial (bacteria, plants, earthworms, collembolans) organisms. The assessment followed an Extended Limit Test design (three dilutions of eluate or solid IBA) and the Lowest Ineffective Dilution (LID-approach) for ecotoxicity classification. The results emphasize the importance of testing different species. It was also evidenced that tests with daphnids and earthworms may be shortened to 24 h; the miniaturization of tests is suitable as e.g. differential sensitivity of microalgae and macrophytes was captured with low variability; alternative testing kits can be used when methodological difficulties are found. Microalgae were more sensitive than macrophytes. Similar results were found for the Thamnotoxkit and daphnids test for eluates with natural pH, so the former may be used as an alternative. B. rapa was the most sensitive organism, suggesting that it may be tested as the only terrestrial plant species and that minimum test duration is appropriate. F. candida does not appear to add information to the battery. The differences in sensitivity of A. fischeri and E. fetida compared to the remaining species were not significant enough to exclude them from the battery. Thus, this work suggests a biotest battery to test IBA comprising aquatic tests - Aliivibrio fischeri, Raphidocelis subcapitata (miniaturised test), and Daphnia magna (24 h when clear deleterious effects are observed) or Thamnocephalus platyurus (toxkit) - and terrestrial tests - Arthrobacter globiformis, Brassica rapa (14 d), and Eisenia fetida (24 h). Testing waste with natural pH is also recommended. The Extended Limit Test design considering the LID-approach seems useful in waste testing, particularly for the industry, involving low effort, test material requirements, and few laboratory resources. The LID-approach allowed for differentiating ecotoxic from non-ecotoxic effects and captured different sensitivities between species. Ecotoxicological assessment of other waste may benefit from these recommendations, but caution should be taken given the properties of each waste type.


Asunto(s)
Ceniza del Carbón , Incineración , Unión Europea , Plantas
2.
J Hazard Mater ; 455: 131649, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37210879

RESUMEN

Environmental protection is a central concern regarding municipal solid waste incineration bottom ash (IBA) management, but the assessment of waste Hazardous Property HP14 (ecotoxicity) is still under debate. Civil engineering applications may be a suitable management strategy. This work aimed at evaluating IBA regarding mechanical behaviour and environmental hazardous potential, including a biotest battery for ecotoxicity assessment (comprising miniaturised tests), to explore its potential for safe utilization. Physical, chemical, ecotoxicological (Aliivibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Lepidium sativum), and mechanical (one-dimensional compressibility, shear strength) analyses were performed. The low leaching for potentially toxic metals and ions complied with European Union (EU) limit values for non-hazardous waste landfills. No relevant ecotoxicological effects were found. The biotest battery seems suitable for ecotoxicological assessment in the aquatic ecosystem, providing wide information on waste impact on different trophic/functional levels and chemical uptake routes, simultaneously involving short-duration tests and reduced amounts of waste. IBA presented more compressibility than sand, but its mixture with sand (30%:70%) was closer to sand compressibility. IBA (lower stresses) and the mixture (higher stresses) showed slightly higher shear strength than sand. Overall, IBA presented the potential for valorisation as loose aggregates from an environmental and mechanical viewpoint in a circular economy framework.


Asunto(s)
Ceniza del Carbón , Incineración , Ceniza del Carbón/química , Ecosistema , Arena , Unión Europea , Residuos Sólidos
3.
J Environ Manage ; 299: 113505, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454202

RESUMEN

The biorefinery approach must be boosted in the management of agro-residues in the future. The present study aims to investigate the valorization of tomato production residues, namely rotten tomato (unfit for consumption - RT), green tomato (GT), and tomato branches (TB). The assessment involves the recovery of value-added compounds through the extraction process followed by biogas production through anaerobic digestion. A thorough characterization of the three residues (RT, GT, and TB) was carried out, including the identification of volatile compounds by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). The volatiles analysis revealed the presence of flavor enhancer compounds and molecules with insecticidal properties. A solid-liquid extraction with ethanol allowed the recovery of value-added compounds in the extracts, in particular phenolic compounds, ß-carotene, and lycopene, which contributed to the antioxidant activity. RT and TB extracts were found to be richer in total phenolic compounds (~27 mg GAE/gdb dry basis) and exhibited higher antioxidant activity (IC50 = 0.911 and 0.745 mg/mL). The tomato branches extract had the highest concentration of carotenoids with 37.23 and 3.08 mg/kgdb of ß-carotene and lycopene, respectively. The biochemical methane potential (BMP) was assessed in sealed reactors operating in anaerobic conditions for all the raw (RT, GT, and TB) and extracted substrates waste (RTe, GTe, and TBe). While the BMP of RT and GT was in the range of 232-285 mL CH4/g VS, a lower value of 141 mL CH4/g VS was obtained for TB. The methane production for each pair of raw and extracted substrates (RT/RTe, GT/GTe, and TB/TBe) was considered statistically similar at a 95 % confidence level. Overall, the value-added compounds recovery through ethanolic extraction did not compromise the methane production of the materials.


Asunto(s)
Solanum lycopersicum , Antioxidantes , Biocombustibles , Licopeno , Metano , Fenoles/análisis
4.
Sci Total Environ ; 649: 1599-1608, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308928

RESUMEN

Biochemical methane potential (BMP) corresponds to the maximum methane production at anaerobic digestion infinite time and is a key parameter to evaluate the suitability of substrates to obtain biogas. The main objective of this work is to explore the data available in the literature for ten categories of substrates to compare and develop new methods and mathematical models able to predict BMP. Indeed, experimental procedure is time-consuming, laborious and costly, and the development of methods or models based on properties easily assessed may be very helpful at industrial scale. In this study, three substrates (banana waste, tomato waste and winery wastewater) were tested and compared with >150 results from the literature. The analysis involved four methods (Met_I to Met_IV) and five models developed by multivariate regression (Mod_I to Mod_V). Met_I is related to elemental analysis; Met_II with the organic fraction composition; Met_III is associated with chemical oxygen demand (COD); Met_IV is based on NIR spectra. Regression models are combinations by grouping single variables: C, H, O, N (Mod_I); hemicellulose, lignin (LG), acid detergent fibre (ADF) (Mod_II); volatile solids (VS), COD (Mod_III); proteins (PT), carbohydrates (CRB), lipids (LP) (Mod_IV); and CRB, LP, PT, LG, ADF (Mod_V). The results showed that no significant correlation can be found between BMP and single common properties (e.g. VS or C/N ratio). However, good results may be achieved with models developed by multivariate regression (R2 from 0.93 to 0.98, and R2adj from 0.91 to 0.96). The prediction of BMP based on Met_IV, which is based on NIR spectroscopy combined with a multivariate regression model, revealed to be a promising method for both data from literature as well as for substrates analyzed in the present work.

5.
Sci Total Environ ; 599-600: 2054-2064, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28558427

RESUMEN

Coagulation phenomena can occur in certain types of waste lubricant oils (WLO) during regeneration processes involving alkaline treatments, causing plant shutdowns. In this context, this study addresses the nature of the compounds responsible for the coagulation phenomena after the alkaline treatment. For such, an empirical test was developed to assess the coagulation behaviour of WLO, consisting in the addition of KOH to the WLO followed by heating under stirring conditions. This test was performed on 133 samples and four coagulation classes were identified: A; B1; B2 and C. Moreover, a physicochemical characterization of WLO was carried out regarding viscosity at 40°C, saponification number (SN), total acid number (TAN), surface tension, water content, elemental analysis and functional groups (FTIR). 56 samples of fresh lubricant oils for different applications were also characterized and their properties assessed and compared. Multivariate methods were applied to WLO to discriminate among coagulation classes based on FTIR spectra. It was found that coagulation classes A and B1 exhibit statistically similar patterns for all properties determined. Spectral discriminating analysis did not reveal discriminant peaks for class B1 samples, and the presence of specific additives was pointed as the possible factor underlying the increase in viscosity in this oils. Class B2 presents the absence of additives and oxidation products as differentiating features. In addition, B2 samples showed lower TAN SN, and lower concentration of some elements. Lubricants from gear or hydraulic applications can give rise to this class of WLO. Oils of Class C are mainly composed by synthetic ester type base oils, which hamper regeneration processes using alkaline pretreatments. In future studies, WLO type A and B1 can be classified as a single class. The coagulation phenomena classification becomes A - negative, B - precipitate formation and C - positive.

6.
J Colloid Interface Sci ; 380(1): 134-40, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22633575

RESUMEN

This work is devoted to the application of hydrophobic silica based aerogels and xerogels for the removal of three toxic organic compounds from aqueous solutions. These materials were tested and characterized regarding their morphology, particle size distribution, surface area and porous structure. The equilibrium tests were carried out at different adsorbate concentrations and the experimental data were correlated by means of Langmuir and Freundlich isotherms. The equilibrium data were well described by Langmuir and Freundlich in most cases. The maximum adsorption capacity by Langmuir model was observed for the adsorption of benzene onto aerogel (192.31 mg/g), though the most promising results were obtained for toluene adsorption due to the greater adsorption energy involved. Comparing these results with other reported results, the hydrophobic silica based aerogels/xerogels were found to exhibit a remarkable performance for the removal of benzene and toluene. In addition, the regeneration of previously saturated aerogel/toluene was also investigated by using an ozonation process. The adsorption/regeneration tests with ozone oxidation showed that the aerogel might be regenerated, nevertheless the materials lost their hydrophobicity and thus different methods should be evaluated in forthcoming investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...