Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559705

RESUMEN

In recent years, nanoparticulate materials have aroused interest in the field of organic electronics due to their high versatility which increases the efficiency of devices. In this work, four different stable conformations based on the organic semiconductors P3HT and PC71BM were synthesized using the nanoprecipitation method, including blend and core-shell nanoparticles. All nanoparticles were obtained free of surfactants and in aqueous suspensions following the line of ecologically correct routes. The structural and optoelectronic properties of the nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption spectroscopy and UV-visible photoluminescence (PL). Even in aqueous media, the blend and core-shell nanoparticles exhibited a greater light absorption capacity, and these conformations proved to be effective in the process of dissociation of excitons that occurs at the P3HT donor/PC71BM acceptor interface. With all these characteristics and allied to the fact that the nanoparticles are surfactant-free aqueous suspensions, this work paves the way for the use of these colloids as a photoactive layer of organic photovoltaic devices that interface with biological systems.

2.
ACS Appl Mater Interfaces ; 11(45): 42420-42428, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31635456

RESUMEN

A new biopolymer obtained from onion pulp (Allium cepa L.) was employed to produce a sustainable substrate for flexible organic light-emitting diodes (FOLEDs). Indium tin oxide (ITO) and SiO2 thin films were deposited by rf-magnetron sputtering onto these biosubstrates to obtain flexible, transparent, and conductive anodes, on top of which FOLEDs were produced. This new biomaterial exhibits an optical transparency of 63% at 550 nm. ITO films were optimized by varying rf power during deposition onto the biopolymers, and their electrical properties are comparable to the those of ITO grown on top of rigid substrates: a carrier concentration of -3.63 × 1021 cm-3 and carrier mobility of 7.72 cm2 V-1 s-1 for the optimized film. Consequently, the sheet resistance and resistivity of this ITO film were 8.92 Ω sq-1 and 2.23 × 10-4 Ω cm, respectively, hence allowing the production of FOLEDs. The A. cepa L. based FOLED was fabricated using CuPc, ß-NPB, and Alq3 as organic layers, and it exhibited a maximum luminance of about 2062 cd m-2 at 16.6 V. The current efficiency reached a maximum value of 2.1 cd A-1 at 85.3 mA cm-2. The obtained results suggest the possibility to use these substrates for innovative biocompatible applications in optoelectronics, such as photodynamic therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...