Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(5): 110313, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108528

RESUMEN

The adult neurogenic niche in the hippocampus is maintained through activation of reversibly quiescent neural stem cells (NSCs) with radial glia-like morphology (RGLs). Here, we show that the expression of SoxD transcription factors Sox5 and Sox6 is enriched in activated RGLs. Using inducible deletion of Sox5 or Sox6 in the adult mouse brain, we show that both genes are required for RGL activation and the generation of new neurons. Conversely, Sox5 overexpression in cultured NSCs interferes with entry in quiescence. Mechanistically, expression of the proneural protein Ascl1 (a key RGL regulator) is severely downregulated in SoxD-deficient RGLs, and Ascl1 transcription relies on conserved Sox motifs. Additionally, loss of Sox5 hinders the RGL activation driven by neurogenic stimuli such as environmental enrichment. Altogether, our data suggest that SoxD genes are key mediators in the transition of adult RGLs from quiescence to an activated mitotic state under physiological situations.


Asunto(s)
Células Madre Adultas/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXD/metabolismo , Animales , Diferenciación Celular/fisiología , Hipocampo/metabolismo , Ratones Transgénicos , Neurogénesis/fisiología , Factores de Transcripción SOXD/genética , Factores de Transcripción/metabolismo
2.
Reproduction ; 160(4): 579-589, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698149

RESUMEN

Failures during conceptus elongation are a major cause of pregnancy losses in ungulates, exerting a relevant economic impact on farming. The developmental events occurring during this period are poorly understood, mainly because this process cannot be recapitulated in vitro. Previous studies have established an in vitro post-hatching development (PHD) system that supports bovine embryo development beyond the blastocyst stage, based on agarose gel tunnels and serum- and glucose-enriched medium. Unfortunately, under this system embryonic disc formation is not achieved and embryos show notorious signs of apoptosis and necrosis. The objective of this study has been to develop an in vitro system able to support embryonic disc formation. We first compared post-hatching development inside agarose tunnels or free-floating over an agarose-coated dish in serum- and glucose-enriched medium (PHD medium). Culture inside agarose tunnels shaped embryo morphology by physical constriction, but it restricted embryo growth and did not provide any significant advantage in terms of development of hypoblast and epiblast lineages. In contrast to PHD medium, a chemically defined and enriched medium (N2B27) supported complete hypoblast migration and epiblast survival in vitro, even in the absence of agarose coating. Cells expressing the pluripotency marker SOX2 were observed in ~56% of the embryos and ~25% developed embryonic disc-like structures formed by SOX2+ cells. In summary, here we provide a culture system that supports trophectoderm proliferation, hypoblast migration and epiblast survival after the blastocyst stage.


Asunto(s)
Blastocisto/fisiología , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos/fisiología , Desarrollo Embrionario , Animales , Blastocisto/citología , Bovinos , Diferenciación Celular , Técnicas de Cultivo de Embriones/métodos , Embrión de Mamíferos/citología , Femenino , Morfogénesis , Embarazo
3.
Glia ; 66(1): 47-61, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28795439

RESUMEN

We show that the G protein-coupled receptor GPR37-like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1-/- mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1-mediated signalling inhibited astrocyte glutamate transporters and - surprisingly, given its lack of expression in neurons - reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D-serine or TNF-α, two astrocyte-derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1-/- brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Astrocitos/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Astrocitos/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/citología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , N-Metilaspartato/farmacología , Neuronas/fisiología , Receptores Acoplados a Proteínas G/genética , Reconocimiento en Psicología/fisiología
4.
Dev Neurobiol ; 75(5): 522-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25363628

RESUMEN

The basic organization of somatosensory circuits in the spinal cord is already setup during the initial patterning of the dorsal neural tube. Extrinsic signals, such as Wnt and TGF-ß pathways, activate combinatorial codes of transcription factors that are responsible for generating a pattern of discrete domains of dorsal progenitors (dp). These progenitors will give rise to distinct dorsal interneurons (dI). The Wnt/ ßcatenin signaling pathway controls specification of dp/dI1-3 progenitors and interneurons. According to the current model in the field, Wnt/ßcatenin activity seems to act in a graded fashion in the spinal cord, as different relative levels determine the identity of adjacent progenitors. However, it is not clear how this activity gradient is controlled and how the identities of dI1-3 are differentially regulated by Wnt signalling. We have determined that two SoxD transcription factors, Sox5 and Sox6, are expressed in restricted domains of dorsal progenitors in the neural tube. Using gain- and loss-of function approaches in chicken embryos, we have established that Sox5 controls cell fate specification of dp2 and dp3 progenitors and, as a result, controls the correct number of the corresponding dorsal interneurons (dI2 and dI3). Furthermore, Sox5 exerts its function by restricting dorsally Wnt signaling activity via direct transcriptional induction of the negative Wnt pathway regulator Axin2. By that way, Sox5 acts as a Wnt pathway modulator that contributes to sharpen the dorsal gradient of Wnt/ßcatenin activity to control the distinction of two functionally distinct types of interneurons, dI2 and dI3 involved in the somatosensory relay.


Asunto(s)
Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/citología , Factores de Transcripción SOXD/metabolismo , Médula Espinal/metabolismo , Células Madre/citología , Animales , Proteínas Aviares/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Pollos , Factores de Transcripción SOXD/genética , Transducción de Señal/genética , Médula Espinal/embriología , Proteínas Wnt/metabolismo
5.
J Cell Biol ; 194(3): 489-503, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21807879

RESUMEN

Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.


Asunto(s)
Transición Epitelial-Mesenquimal , Factores de Crecimiento de Fibroblastos/metabolismo , Cresta Neural/citología , Tretinoina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/fisiología , Ciclo Celular , Movimiento Celular , Sistema Nervioso Central/embriología , Embrión de Pollo , Electroporación , Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cresta Neural/metabolismo , Cresta Neural/fisiología , Sistema Nervioso Periférico/embriología , Reacción en Cadena de la Polimerasa , Transducción de Señal , Factores de Transcripción/biosíntesis , Proteínas Wnt/metabolismo
6.
EMBO Rep ; 11(6): 466-72, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20448664

RESUMEN

Genes of the SOX family of high-mobility group transcription factors are essential during nervous system development. In this study, we show that SOX5 is expressed by neural progenitors in the chick spinal cord and is turned off as differentiation proceeds. The overexpression of SOX5 in neural progenitors causes premature cell cycle exit and prevents terminal differentiation. Conversely, knocking down SOX5 protein extends the proliferative period of neural progenitors and causes marked cell death in a dorsal interneuron (dI3) population. Furthermore, SOX5 reduces WNT-beta-catenin signalling, thereby triggering the expression of the negative regulator of the pathway axin2. We propose that SOX5 regulates the timing of cell cycle exit by opposing WNT-beta-catenin activity on cell cycle progression.


Asunto(s)
Ciclo Celular , Neuronas/citología , Factores de Transcripción SOXD/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Embrión de Pollo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Interneuronas/metabolismo , Factores de Transcripción SOXD/genética , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Células Madre/citología , Factores de Tiempo , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...