Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 176, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448825

RESUMEN

BACKGROUND: The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS: Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS: In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.


Asunto(s)
Impatiens , Microbiota , Fertilizantes , Nutrientes , Suelo
2.
Microbiol Spectr ; 10(6): e0250622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36346230

RESUMEN

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Animales , Porcinos , Microbioma Gastrointestinal/genética , Heces , Dieta , Bacteroidetes , Firmicutes , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...