Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 905: 167023, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717767

RESUMEN

Animal fibers are an important raw material for the fashion industry but have recently been discussed due to the environmental impacts related to their production. In order to provide scientific information for decision-making in the Peruvian alpaca sector a cradle to grave carbon footprint of one (01) wear of a 100 % alpaca fiber sweater has been conducted. For the modeling of the fiber procurement stage primary data regarding livestock management and annual production parameters were obtained from interviews with 42 Peruvian alpaca herders from the main producing regions in South and Central Peru. Data for the processing stages (spinning and dyeing, knitting and weaving) were collected by means of interviews and questionnaires from three alpaca fashion companies in Arequipa and Lima. The distribution, use, and end-of-life stages were modeled with secondary data. The resulting carbon footprint of one wear of the alpaca fiber sweater is 0.449 kg CO2 equivalents (CO2e). Most emissions occur during the lifecycle stages of fiber production and distribution (70 % and 14 % of CO2e emissions, respectively). Methane emissions from enteric fermentation account for 87 % of the impact within the fiber procurement stage. The environmental impacts during the distribution stage were dominated by retailing and road transport in the destination countries and export by air and sea (53.1 % and 46.4 % of carbon emissions in this stage, respectively). Other life cycle stages were found to be less relevant emission sources. The study concluded that the main strategies for impact mitigation should focus on improving the efficiency of the fiber procurement systems. Furthermore, several knowledge gaps have been identified and should be addressed by future research regarding methane emissions associated with the main co-products of the livestock systems, ecosystem services in the Andes and especially Andean wetlands and potential mitigation strategies of greenhouse gases related to different pasture management options.

2.
Rev. chil. anest ; 51(1): 10-16, 2022. ilus
Artículo en Español | LILACS | ID: biblio-1567895

RESUMEN

INTRODUCTION: Climate change is a health problem and, at the same time, health systems are important contributors. Hospitals stand out due to their high rates of energy consumption, resources and waste generation. The purpose of the study is to know and identify the determinants of sanitary waste and the measures that can be implemented that allow reducing the production of hospital waste, seeking to achieve a general and updated appreciation of this phenomenon and taking into account hospital sustainability. METHOD: A bibliographic search was carried out in pubmed that included keywords related to the concepts of carbon footprint, recycling and hospital waste. The screening yielded a total of 37 articles and later 12 publications founded from references (or that were previously known by the authors) were added. RESULTS: The results are presented into 5 points known as the "5 Rs", named below. "Reduce" (through adequate segregation of waste, correct management of effluents and energy, significant reduction of excesses and automatic administration of anesthetic gases), "Reuse" (through device reprocessing, reusable material and donation), "Recycle", "Rethink" (with examples such as selection of less polluting gases, selective use of containers, staff education) and "Investigate" through different models. DISCUSSION: Several of the recognized measures could have an application in many hospital areas despite the fact that most of the available evidence refers to the operating room. The organization and education of the personnel is important in order to implement the measures found.


INTRODUCCIÓN: La estrategia de disposición y generación de residuos influye en el cambio climático y éste, al mismo tiempo, afecta la salud de las personas, incrementando la frecuencia de enfermedades cardiovasculares, respiratorias e infecciosas, entre otras. Los sistemas sanitarios son contribuyentes importantes, debido a sus altas tasas de consumo de energía, recursos y generación de desechos. Esta revisión de la literatura pretende obtener una apreciación general y actualizada de los determinantes de desechos sanitarios y las medidas implementables para disminuir la producción de residuos hospitalarios y nuestro impacto en el medio ambiente. MÉTODO: Se realizó una amplia búsqueda bibliográfica en la base de datos Medline que incluyó palabras clave relacionadas a huella de carbono, reciclaje y residuos hospitalarios. El cribado arrojó un total de 48 publicaciones. RESULTADOS: Se presentan los resultados organizados en 5 puntos, a los que se les conoce como las "5 R" y que corresponden a "Reducir" (a través de segregación adecuada de residuos, correcta gestión de efluentes, energía y disminución de excesos), "Reusar" (a través de reprocesamiento de dispositivos), "Reciclar" (transformación de residuos), "Repensar" (búsqueda de nuevas formas, innovadoras y sustentables, de las prácticas clínicas) e "Investigar" (Research, generar nuevo conocimiento). DISCUSIÓN: Numerosas estrategias pueden ser implementadas para contribuir a la sustentabilidad hospitalaria y podrían tener una aplicación en muchas áreas, a pesar de que la mayoría de la evidencia disponible hace referencia al sector quirúrgico. La investigación nos ofrece herramientas para desarrollar nuevas alternativas de gestión, donde la organización y educación del personal son esenciales.


Asunto(s)
Humanos , Calentamiento Global , Desarrollo Sostenible , Hospitales , Cambio Climático , Eliminación de Residuos Sanitarios , Equipo Reutilizado , Conservación de los Recursos Naturales , Huella de Carbono , Reciclaje
3.
Rev. chil. anest ; 51(1): 17-21, 2022. tab
Artículo en Español | LILACS | ID: biblio-1567899

RESUMEN

INTRODUCTION: Climate change is a health problem and, at the same time, health systems are important contributors. Hospitals stand out due to their high rates of energy consumption, resources and waste generation. The purpose of the study is to know and identify the determinants of sanitary waste and the measures that can be implemented that allow reducing the production of hospital waste, seeking to achieve a general and updated appreciation of this phenomenon and taking into account hospital sustainability. METHOD: A bibliographic search was carried out in pubmed that included keywords related to the concepts of carbon footprint, recycling and hospital waste. The screening yielded a total of 37 articles and later 12 publications founded from references (or that were previously known by the authors) were added. RESULTS: The results are presented into 5 points known as the "5 Rs", named below. "Reduce" (through adequate segregation of waste, correct management of effluents and energy, significant reduction of excesses and automatic administration of anesthetic gases), "Reuse" (through device reprocessing, reusable material and donation), "Recycle", "Rethink" (with examples such as selection of less polluting gases, selective use of containers, staff education) and "Investigate" through different models. DISCUSSION: Several of the recognized measures could have an application in many hospital areas despite the fact that most of the available evidence refers to the operating room. The organization and education of the personnel is important in order to implement the measures found.


INTRODUCCIÓN: La estrategia de disposición y generación de residuos influye en el cambio climático y éste, al mismo tiempo, afecta la salud de las personas, incrementando la frecuencia de enfermedades cardiovasculares, respiratorias e infecciosas entre otras. Los sistemas sanitarios son contribuyentes importantes, debido a sus altas tasas de consumo de energía, recursos y generación de desechos. Esta revisión de la literatura pretende obtener una apreciación general y actualizada de los determinantes de desechos sanitarios y las medidas implementables para disminuir la producción de residuos hospitalarios y nuestro impacto en el medio ambiente. MÉTODO: Se realizó una amplia búsqueda bibliográfica en la base de datos Medline que incluyó palabras clave relacionadas a huella de carbono, reciclaje y residuos hospitalarios. El cribado arrojó un total de 48 publicaciones. RESULTADOS: Se presentan los resultados organizados en 5 puntos, a los que se les conoce como las "5 R" y que corresponden a "Reducir" (a través de segregación adecuada de residuos, correcta gestión de efluentes, energía y disminución de excesos), "Reusar" (a través de reprocesamiento de dispositivos), "Reciclar" (transformación de residuos), "Repensar" (búsqueda de nuevas formas, innovadoras y sustentables, de las prácticas clínicas) e "Investigar" (Research, generar nuevo conocimiento). DISCUSIÓN: Numerosas estrategias pueden ser implementadas para contribuir a la sustentabilidad hospitalaria y podrían tener una aplicación en muchas áreas, a pesar de que la mayoría de la evidencia disponible hace referencia al sector quirúrgico. La investigación nos ofrece herramientas para desarrollar nuevas alternativas de gestión, donde la organización y educación del personal son esenciales.


Asunto(s)
Humanos , Calentamiento Global , Desarrollo Sostenible , Hospitales , Cambio Climático , Eliminación de Residuos Sanitarios , Equipo Reutilizado , Huella de Carbono , Reciclaje
4.
Rev. chil. anest ; 51(3): 273-280, 2022. ilus, tab, graf
Artículo en Español | LILACS | ID: biblio-1571238

RESUMEN

Human health has been negatively impacted by the difficult environmental conditions produced by climate change. The health industry, paradoxically, generates a carbon footprint (CF) that drives climate change and represents 9.8% of the greenhouse gas (GHG) emissions in the United States (2013) and 6.3% of CF in England (2017). A considerable portion of these emissions comes from the clinical practice of anesthesia. Anesthetic gases present global warming potentials (GWPs) of up to 3,714 times higher than CO2 throughout their life cycles, from their manufacture and use to their disposal. In this context, this review compiled and assessed the environmental impacts of the anesthetic strategy in clinical practice, making use of the life cycle analysis tool. This review describes how the anesthetic technique has a major impact on CF, through the emission of GHG expressed through tools such as the GWP. As an example, at the manufacturing stage, the GWP of halogenated gases is up to 2,540 kg COeq versus 21 kg COeq for Propofol. This and other variables determine the contribution of the anesthetic technique in the emission of GHG. Finally, this review aims to help health care providers make informed decisions when considering the CH and sustainability of each anesthetic technique.


La salud de las personas se ha visto afectada negativamente debido a las difíciles condiciones ambientales producidas por el cambio climático. La industria sanitaria, paradójicamente, genera una huella de carbono (HC) que impulsa el cambio climático y representa el 9,8% de las emisiones de gases de efecto invernadero (GEI) en Estados Unidos (2013) y el 6,3% de la HC en Inglaterra (2017). Una parte considerable de estas emisiones proviene de la práctica clínica de la anestesia. Los gases anestésicos presentan potenciales de calentamiento global (GWP) de hasta 3.714 veces superiores al CO2 a lo largo de su ciclo de vida, desde su fabricación y uso, hasta su eliminación. En este contexto, esta revisión compiló y evaluó los impactos ambientales de la estrategia anestésica en la práctica clínica, haciendo uso de la herramienta de análisis del ciclo de vida. Esta revisión describe como la técnica anestésica presenta un impacto de magnitud en la HC, a través de la emisión de GEI expresado a través de herramientas como es el GWP. Como ejemplo, en el caso de los gases halogenados estos pueden generar hasta 2.540 kg COeq en su etapa de fabricación frente a 21 kg COeq para el Propofol. Esta y otras variables determinan el aporte de la técnica anestésica en la emisión de GEI. Finalmente, esta revisión tiene como objetivo ayudar al cuerpo médico a tomar decisiones informadas al considerar la HC y la sustentabilidad de cada técnica de anestesia.


Asunto(s)
Humanos , Efecto Invernadero , Calentamiento Global , Huella de Carbono , Monitoreo Biológico , Anestesia , Anestesiología
5.
Molecules ; 25(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380693

RESUMEN

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


Asunto(s)
Celulosa/química , Polietileno/química , Saccharum/química , Rastreo Diferencial de Calorimetría , Fósiles , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Impresión Tridimensional , Termogravimetría
6.
Sci Total Environ ; 720: 137586, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32325583

RESUMEN

This study aims to evaluate the life cycle environmental implications of producing fiber-reinforced biocomposite pellets, compared with sugarcane- and petroleum-based polyethylene (PE) pellets. Life Cycle Assessment (LCA) methodology is used to evaluate the production of four types of pellets. LCA allows the evaluation of the benefits of improving the production of biobased materials by replacing part of the sugarcane bioPE with bagasse fibers. The functional unit selected was the production of 1 kg of plastic pellets. Primary data were collected from laboratory tests designed to obtain pulp fibers from bagasse and mix them with sugarcane bioPE. Two processes were studied to obtain fibers from bagasse: soda fractionation and hot water-soda fractionation. The results from the LCA show environmental improvements when reducing the amount of bioPE by replacing it with bagasse fibers in the categories of global warming, ozone formation, terrestrial acidification and fossil resource scarcity, when comparing to 100% sugarcane bioPE, and a reduction in global warming and fossil resource scarcity when compared to fossil-based PE. In contrast, results also indicate that there could be higher impacts in terms of ozone formation, freshwater eutrophication, and terrestrial acidification. Even though biocomposites result as a preferred option to bioPE, several challenges need to be overcome before a final recommendation is placed. The sensitivity analysis showed the importance of the energy source on the impacts of the processing of fibers. Thus, using clean energy to produce biobased materials may reduce the impacts related to the production stage. These results are intended to increase the attention of the revalorization of these residues and their application to generate more advanced materials. Further outlook should also consider a deeper evaluation of the impacts during the production of a plastic object and possible effects of the biobased materials during final disposal.


Asunto(s)
Saccharum , Celulosa , Eutrofización , Calentamiento Global
7.
Sci Total Environ ; 637-638: 221-232, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29751305

RESUMEN

Quinoa is a plant that is cultivated in the Andean highlands across Peru and Bolivia. It is increasingly popular due to its high nutritive value and protein content. In particular, the cultivation of organic quinoa has grown substantially in recent years since it is the most demanded type of quinoa in the foreign market. Nevertheless, despite the interest that quinoa has generated in terms of its nutritional properties, little is known regarding the environmental profile of its production and processing. Therefore, the main objective of this study was to analyze the environmental impacts that are linked to the production and distribution of organic quinoa to the main export destinations through the application of the Life Cycle Assessment (LCA) methodology. An attributional LCA perspective was conducted including data from approximately 55 ha of land used for quinoa production in the regions of Huancavelica and Ayacucho, in southern-central Peru. IPCC, 2013 and ReCiPe 2008 were the two assessment methods selected to estimate the environmental impact results using the SimaPro 8.3 software. Results, which were calculated for one 500 g package of organic quinoa, showed that GHG emissions are in the upper range of other organic agricultural products. However, when compared to other high protein content food products, especially those from animal origin, considerably low environmental impacts are obtained. For instance, if 20% of the average annual beef consumption in Peru is substituted by organic quinoa, each Peruvian would mitigate 31 kg CO2eq/year in their diet. Moreover, when the edible protein energy return on investment (i.e., ep-EROI) is computed, a ratio of 0.38 is obtained, in the higher range of protein rich food products. However, future research should delve into the environmental and food policy implications of agricultural land expansion to produce an increasing amount of quinoa for a growing global demand.


Asunto(s)
Agricultura , Chenopodium quinoa/crecimiento & desarrollo , Abastecimiento de Alimentos , Desarrollo Sostenible , Animales , Bolivia , Valor Nutritivo , Perú
8.
Sci Total Environ ; 601-602: 532-542, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575831

RESUMEN

The environmental sustainability of the cultivation of grapes for the production of alcoholic beverages has been extensively analyzed in the literature from a Life Cycle Assessment perspective, although certain impact categories have been repeatedly neglected despite their importance, such as toxic emissions or the depletion of freshwater resources. Hence, the current study provides a detailed assessment of water footprint-related impact categories, including toxicity, for the cultivation of grapes for pisco production, an alcoholic beverage produced in coastal Peru in hyper-arid areas that suffer high levels of water scarcity. Characterization factors at a sub-watershed level were used to calculate water consumption impact assessment of grape production using the AWARE method. Site-specific toxic emissions were modelled using the PestLCI model, considering primary climate and soil data. The USEtox assessment method was then used to compute freshwater eco-toxicity with these data. Results demonstrate the high water footprint of irrigating vineyards in coastal Peru, especially considering the inefficient flooding irrigation process. In terms of water consumption, despite the high variability shown between sub-watersheds, the shift to other irrigation technologies must be analyzed with care due to the high competition for water existing in the area. Eutrophication potential showed particularly high values compared to the literature, whereas freshwater eco-toxicity impacts were relatively low due to the high volatilization of pesticides to air. Nevertheless, the lack of an adequate wastewater management system implies that the estimated potential toxic and eutrophying emissions may constitute a further environmental threat to water bodies.


Asunto(s)
Bebidas Alcohólicas , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Monitoreo del Ambiente , Eutrofización , Agua Dulce , Perú , Vitis , Aguas Residuales/estadística & datos numéricos , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Waste Manag ; 59: 200-210, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27751683

RESUMEN

Rapid population growth and consumption of goods and services imply that demand for energy and resources increases continuously. Energy consumption linked to non-renewable resources contributes to greenhouse gas emissions and enhances resource depletion. In this context, the use of agricultural solid residues such as rice husk, coffee husk, wheat straw, sugar cane bagasse, among others, has been widely studied as an alternative energy source in order to decrease the use of fossil fuels. However, rice husk is among those agricultural residues that are least used to obtain energy in developing countries. Approximately 134 million tonnes of rice husk are produced annually in the world, of which over 90% are burned in open air or discharged into rivers and oceans in order to dispose of them. This review examines the energetic potential of agricultural residues, focused on rice husk. The review describes direct combustion and fast pyrolysis technologies to transform rice husk into energy considering its physical and chemical properties. In addition, a review of existing studies analyzing these technologies from an environmental life cycle thinking perspective, contributing to their sustainable use, is performed.


Asunto(s)
Agricultura/métodos , Fuentes Generadoras de Energía , Oryza/química , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Carbón Orgánico , Conservación de los Recursos Naturales , Ambiente , Política Ambiental , Gases , Calor , Modelos Teóricos , Saccharum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA