Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Dis Model ; 9(2): 601-617, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558958

RESUMEN

Despite most COVID-19 infections being asymptomatic, mainland China had a high increase in symptomatic cases at the end of 2022. In this study, we examine China's sudden COVID-19 symptomatic surge using a conceptual SIR-based model. Our model considers the epidemiological characteristics of SARS-CoV-2, particularly variolation, from non-pharmaceutical intervention (facial masking and social distance), demography, and disease mortality in mainland China. The increase in symptomatic proportions in China may be attributable to (1) higher sensitivity and vulnerability during winter and (2) enhanced viral inhalation due to spikes in SARS-CoV-2 infections (high transmissibility). These two reasons could explain China's high symptomatic proportion of COVID-19 in December 2022. Our study, therefore, can serve as a decision-support tool to enhance SARS-CoV-2 prevention and control efforts. Thus, we highlight that facemask-induced variolation could potentially reduces transmissibility rather than severity in infected individuals. However, further investigation is required to understand the variolation effect on disease severity.

2.
Math Biosci Eng ; 21(3): 4554-4586, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549340

RESUMEN

The refuge effect is critical in ecosystems for stabilizing predator-prey interactions. The purpose of this research was to investigate the complexities of a discrete-time predator-prey system with a refuge effect. The analysis investigated the presence and stability of fixed points, as well as period-doubling and Neimark-Sacker (NS) bifurcations. The bifurcating and fluctuating behavior of the system was controlled via feedback and hybrid control methods. In addition, numerical simulations were performed as evidence to back up our theoretical findings. According to our findings, maintaining an optimal level of refuge availability was critical for predator and prey population cohabitation and stability.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Conducta Predatoria , Dinámica Poblacional
3.
Sci Rep ; 13(1): 13082, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567888

RESUMEN

In recent years, COVID-19 has evolved into many variants, posing new challenges for disease control and prevention. The Omicron variant, in particular, has been found to be highly contagious. In this study, we constructed and analyzed a mathematical model of COVID-19 transmission that incorporates vaccination and three different compartments of the infected population: asymptomatic [Formula: see text], symptomatic [Formula: see text], and Omicron [Formula: see text]. The model is formulated in the Caputo sense, which allows for fractional derivatives that capture the memory effects of the disease dynamics. We proved the existence and uniqueness of the solution of the model, obtained the effective reproduction number, showed that the model exhibits both endemic and disease-free equilibrium points, and showed that backward bifurcation can occur. Furthermore, we documented the effects of asymptomatic infected individuals on the disease transmission. We validated the model using real data from Thailand and found that vaccination alone is insufficient to completely eradicate the disease. We also found that Thailand must monitor asymptomatic individuals through stringent testing to halt and subsequently eradicate the disease. Our study provides novel insights into the behavior and impact of the Omicron variant and suggests possible strategies to mitigate its spread.


Asunto(s)
COVID-19 , Conceptos Matemáticos , Humanos , Tailandia/epidemiología , Modelos Biológicos , Simulación por Computador , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2
4.
Comput Math Methods Med ; 2022: 7656451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936367

RESUMEN

This paper proposes a three-step iterative technique for solving nonlinear equations from medical science. We designed the proposed technique by blending the well-known Newton's method with an existing two-step technique. The method needs only five evaluations per iteration: three for the given function and two for its first derivatives. As a result, the novel approach converges faster than many existing techniques. We investigated several models of applied medical science in both scalar and vector versions, including population growth, blood rheology, and neurophysiology. Finally, some complex-valued polynomials are shown as polynomiographs to visualize the convergence zones.


Asunto(s)
Algoritmos , Humanos
5.
Results Phys ; 24: 104098, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33816093

RESUMEN

We propose a new mathematical model to investigate the recent outbreak of the coronavirus disease (COVID-19). The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents an epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. The global asymptotic stability conditions for the disease free equilibrium are obtained. The real COVID-19 incidence data entries from 01 July, 2020 to 14 August, 2020 in the country of Pakistan are used for parameter estimation thereby getting fitted values for the biological parameters. Sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. To view more features of the state variables in the proposed model, we perform numerical simulations by using different values of some essential parameters. Moreover, profiles of the reproduction number through contour plots have been biologically explained.

6.
Infect Dis Model ; 6: 448-460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33619461

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a novel virus that emerged in China in late 2019 and caused a pandemic of coronavirus disease 2019 (COVID-19). The epidemic has largely been controlled in China since March 2020, but continues to inflict severe public health and socioeconomic burden in other parts of the world. One of the major reasons for China's success for the fight against the epidemic is the effectiveness of its health care system and enlightenment (awareness) programs which play a vital role in the control of the COVID-19 pandemic. Nigeria is currently witnessing a rapid increase of the epidemic likely due to its unsatisfactory health care system and inadequate awareness programs. In this paper, we propose a mathematical model to study the transmission dynamics of COVID-19 in Nigeria. Our model incorporates awareness programs and different hospitalization strategies for mild and severe cases, to assess the effect of public awareness on the dynamics of COVID-19 infection. We fit the model to the cumulative number of confirmed COVID-19 cases in Nigeria from 29 March to 12 June 2020. We find that the epidemic could increase if awareness programs are not properly adopted. We presumed that the effect of awareness programs could be estimated. Further, our results suggest that the awareness programs and timely hospitalization of active cases are essential tools for effective control and mitigation of COVID-19 pandemic in Nigeria and beyond. Finally, we perform sensitive analysis to point out the key parameters that should be considered to effectively control the epidemic.

7.
Chaos Solitons Fractals ; 144: 110655, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33519123

RESUMEN

Life style of people almost in every country has been changed with arrival of corona virus. Under the drastic influence of the virus, mathematicians, statisticians, epidemiologists, microbiologists, environmentalists, health providers, and government officials started searching for strategies including mathematical modeling, lock-down, face masks, isolation, quarantine, and social distancing. With quarantine and isolation being the most effective tools, we have formulated a new nonlinear deterministic model based upon ordinary differential equations containing six compartments (susceptible S ( t ) , exposed E ( t ) , quarantined Q ( t ) , infected I ( t ) , isolated J ( t ) and recovered R ( t ) ). The model is found to have positively invariant region whereas equilibrium points of the model are investigated for their local stability with respect to the basic reproductive number R 0 . The computed value of R 0 = 1.31 proves endemic level of the epidemic. Using nonlinear least-squares method and real prevalence of COVID-19 cases in Pakistan, best parameters are obtained and their sensitivity is analyzed. Various simulations are presented to appreciate quarantined and isolated strategies if applied sensibly.

8.
Eur Phys J Plus ; 135(10): 795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145145

RESUMEN

Coronaviruses are a large family of viruses that cause different symptoms, from mild cold to severe respiratory distress, and they can be seen in different types of animals such as camels, cattle, cats and bats. Novel coronavirus called COVID-19 is a newly emerged virus that appeared in many countries of the world, but the actual source of the virus is not yet known. The outbreak has caused pandemic with 26,622,706 confirmed infections and 874,708 reported deaths worldwide till August 31, 2020, with 17,717,911 recovered cases. Currently, there exist no vaccines officially approved for the prevention or management of the disease, but alternative drugs meant for HIV, HBV, malaria and some other flus are used to treat this virus. In the present paper, a fractional-order epidemic model with two different operators called the classical Caputo operator and the Atangana-Baleanu-Caputo operator for the transmission of COVID-19 epidemic is proposed and analyzed. The reproduction number R 0 is obtained for the prediction and persistence of the disease. The dynamic behavior of the equilibria is studied by using fractional Routh-Hurwitz stability criterion and fractional La Salle invariant principle. Special attention is given to the global dynamics of the equilibria. Moreover, the fitting of parameters through least squares curve fitting technique is performed, and the average absolute relative error between COVID-19 actual cases and the model's solution for the infectious class is tried to be reduced and the best fitted values of the relevant parameters are achieved. The numerical solution of the proposed COVID-19 fractional-order model under the Caputo operator is obtained by using generalized Adams-Bashforth-Moulton method, whereas for the Atangana-Baleanu-Caputo operator, we have used a new numerical scheme. Also, the treatment compartment is included in the population which determines the impact of alternative drugs applied for treating the infected individuals. Furthermore, numerical simulations of the model and their graphical presentations are performed to visualize the effectiveness of our theoretical results and to monitor the effect of arbitrary-order derivative.

9.
Chaos ; 30(4): 043106, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32357674

RESUMEN

In this research work, a new time-invariant nonlinear mathematical model in fractional (non-integer) order settings has been proposed under three most frequently employed strategies of the classical Caputo, the Caputo-Fabrizio, and the Atangana-Baleanu-Caputo with the fractional parameter χ, where 0<χ≤1. The model consists of a nonlinear autonomous transport equation used to study the adsorption process in order to get rid of the synthetic dyeing substances from the wastewater effluents. Such substances are used at large scale by various industries to color their products with the textile and chemical industries being at the top. The non-integer-order model suggested in the present study depicts the past behavior of the concentration of the solution on the basis of having information of the initial concentration present in the dye. Being nonlinear, it carries the possibility to have no exact solution. However, the Lipchitz condition shows the existence and uniqueness of the underlying model's solution in non-integer-order settings. From a numerical simulation viewpoint, three numerical techniques having first order convergence have been employed to illustrate the numerical results obtained.

10.
Eur Phys J Plus ; 135(4): 378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435550

RESUMEN

Modeling of infectious diseases is essential to comprehend dynamic behavior for the transmission of an epidemic. This research study consists of a newly proposed mathematical system for transmission dynamics of the measles epidemic. The measles system is based upon mass action principle wherein human population is divided into five mutually disjoint compartments: susceptible S(t)-vaccinated V(t)-exposed E(t)-infectious I(t)-recovered R(t). Using real measles cases reported from January 2019 to October 2019 in Pakistan, the system has been validated. Two unique equilibria called measles-free and endemic (measles-present) are shown to be locally asymptotically stable for basic reproductive number R 0 < 1 and R 0 > 1 , respectively. While using Lyapunov functions, the equilibria are found to be globally asymptotically stable under the former conditions on R 0 . However, backward bifurcation shows coexistence of stable endemic equilibrium with a stable measles-free equilibrium for R 0 < 1 . A strategy for measles control based on herd immunity is presented. The forward sensitivity indices for R 0 are also computed with respect to the estimated and fitted biological parameters. Finally, numerical simulations exhibit dynamical behavior of the measles system under influence of its parameters which further suggest improvement in both the vaccine efficacy and its coverage rate for substantial reduction in the measles epidemic.

11.
Chaos ; 29(1): 013143, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709148

RESUMEN

In this study, a physical system called the blood ethanol concentration model has been investigated in its fractional (non-integer) order version. The three most commonly used fractional operators with singular (Caputo) and non-singular (Atangana-Baleanu fractional derivative in the Caputo sense-ABC and the Caputo-Fabrizio-CF) kernels have been used to fractionalize the model, whereas during the process of fractionalization, the dimensional consistency for each of the equations in the model has been maintained. The Laplace transform technique is used to determine the exact solution of the model in all three cases, whereas its parameters are fitted through the least-squares error minimization technique. It is shown that the fractional versions of the model based upon the Caputo and ABC operators estimate the real data comparatively better than the original integer order model, whereas the CF yields the results equivalent to the results obtained from the integer-order model. The computation of the sum of squared residuals is carried out to show the performance of the models along with some graphical illustrations.


Asunto(s)
Nivel de Alcohol en Sangre , Humanos , Modelos Biológicos
12.
Chaos ; 28(12): 123121, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30599538

RESUMEN

In the present study, the fractional version with respect to the Atangana-Baleanu fractional derivative operator in the caputo sense (ABC) of the two-strain epidemic mathematical model involving two vaccinations has extensively been analyzed. Furthermore, using the fixed-point theory, it has been shown that the solution of the proposed fractional version of the mathematical model does not only exist but is also the unique solution under some conditions. The original mathematical model consists of six first order nonlinear ordinary differential equations, thereby requiring a numerical treatment for getting physical interpretations. Likewise, its fractional version is not possible to be solved by any existing analytical method. Therefore, in order to get the observations regarding the output of the model, it has been solved using a newly developed convergent numerical method based on the Atangana-Baleanu fractional derivative operator in the caputo sense. To believe upon the results obtained, the fractional order α has been allowed to vary between ( 0 , 1 ] , whereupon the physical observations match with those obtained in the classical case, but the fractional model has persisted all the memory effects making the model much more suitable when presented in the structure of fractional order derivatives for ABC. Finally, the fractional forward Euler method in the classical caputo sense has been used to illustrate the better performance of the numerical method obtained via the Atangana-Baleanu fractional derivative operator in the caputo sense.


Asunto(s)
Modelos Teóricos , Orthomyxoviridae , Vacunación , Enfermedades Transmisibles , Epidemias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...