Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176862

RESUMEN

Growing conditions and seasonal fluctuations are critical factors affecting fruit and vegetable nutritional quality. The effects of two partially overlapping cropping seasons, early (ECS; January-May) and full (FCS; March-July), on the main carpometric traits and bioactive components of different watermelon fruits were investigated in the open field. Four watermelon genotypes, comprising of three commercial cultivars 'Crimson Sweet', 'Dumara', 'Giza', and the novel hybrid 'P503 F1', were compared. The carpometric traits varied significantly between genotypes. Soluble solids and yield were higher under FCS than ECS. The variation affecting colour indexes between the two growing seasons exhibited a genotype-dependent trend. The antioxidant components and radical scavenging activity of watermelon fruits were also significantly affected by differences in received solar energy and temperature fluctuations during the trial period. The average citrulline, total phenolics and flavonoid contents were 93%, 71% and 40% higher in FCS than in ECS. A genotype-dependent variation trend was also observed for lycopene and total vitamin C between cropping seasons. The hydrophilic and lipophilic radical scavenging activities of the pulp of ripe watermelon fruits of the different genotypes investigated varied between 243.16 and 425.31 µmol Trolox Equivalent (TE) of 100 g-1 of fresh weight (fw) and from 232.71 to 341.67 µmol TE of 100 g-1 fw in FCS and ECS, respectively. Our results, although preliminary, show that the functional quality of watermelon fruits is drastically altered depending on the environmental conditions that characterize the ECS and LCS.

2.
Front Nutr ; 9: 844162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571925

RESUMEN

The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with ß-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.

3.
Front Nutr ; 7: 147, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015121

RESUMEN

Owing to several presumed health-promoting biological activities, increased attention is being given to natural plant chemicals, especially those frequently entering the human diet. Glucosinolates (GLs) are the main bioactive compounds found in broccoli (Brassica oleracea L. var. italica Plenck). Their regular dietary assumption has been correlated with reduced risk of various types of neoplasms (lung, colon, pancreatic, breast, bladder, and prostate cancers), some degenerative diseases, such as Alzheimer's, and decreased incidence of cardiovascular pathologies. GL's synthesis pathway and regulation mechanism have been elucidated mainly in Arabidopsis. However, nearly 56 putative genes have been identified as involved in the B. oleracea GL pathway. It is widely recognized that there are several pre-harvest (genotype, growing environment, cultural practices, ripening stage, etc.) and post-harvest (harvesting, post-harvest treatments, packaging, storage, etc.) factors that affect GL synthesis, profiles, and levels in broccoli. Understanding how these factors act and interact in driving GL accumulation in the edible parts is essential for developing new broccoli cultivars with improved health-promoting bioactivity. In this regard, any systematic and comprehensive review outlining the effects of pre- and post-harvest factors on the accumulation of GLs in broccoli is not yet available. Thus, the goal of this paper is to fill this gap by giving a synoptic overview of the most relevant and recent literature. The existence of substantial cultivar-to-cultivar variation in GL content in response to pre-harvest factors and post-harvest manipulations has been highlighted and discussed. The paper also stresses the need for adapting particular pre- and post-harvest procedures for each particular genotype in order to maintain nutritious, fresh-like quality throughout the broccoli value chain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA