Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(9): e9292, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36110877

RESUMEN

Generalist predators using small mammals as their primary prey are suggested to shift hunting alternative prey such as bird nests, when small mammals are in short supply (the alternative prey hypothesis, APH). Nest survival and survival of young individuals should be positively linked to small mammal abundance and negatively linked to predator abundance, but little information exists from survival of chicks, especially until recruitment. We test these predictions of the APH using 13 years (2002-2014) of life history data from a ground nesting shorebird breeding on coastal meadows. We use small mammal abundance in the previous autumn as a proxy for spring predator abundance, mainly of mammalian predators. We examine whether small mammal abundance in the spring and previous autumn explain annual variation in nest survival from depredation and local recruitment of the southern dunlin Calidris alpina schinzii. As predicted by the APH, survival from nest predation was positively linked to spring small mammal abundance and negatively linked to autumn small mammal abundance. Importantly, local recruitment showed opposite responses. This counterintuitive result may be explained by density-dependent survival. When nest depredation rates are low, predators may show stronger numerical and functional responses to high shorebird chick abundance on coastal meadows, whereas in years of high nest depredation, few hatching chicks lure fewer predators. The opposite effects on nest and local recruitment demonstrate the diverse mechanisms by which population size variation in primary prey can affect dynamics of alternative prey populations.

2.
BMC Ecol Evol ; 21(1): 125, 2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147062

RESUMEN

BACKGROUND: Populations living in fragmented habitats may suffer from loss of genetic variation and reduced between-patch dispersal, which are processes that can result in genetic differentiation. This occurs frequently in species with reduced mobility, whereas genetic differentiation is less common among mobile species such as migratory birds. The high dispersal capacity in the latter species usually allows for gene flow even in fragmented landscapes. However, strongly philopatric behaviour can reinforce relative isolation and the degree of genetic differentiation. The Southern Dunlin (Calidris alpina schinzii) is a philopatric, long-distance migratory shorebird and shows reduced dispersal between isolated breeding patches. The endangered population of the Southern Dunlin breeding at the Baltic Sea has suffered from habitat deterioration and fragmentation of coastal meadows. We sampled DNA across the entire population and used 12 polymorphic microsatellite loci to examine whether the environmental changes have resulted in genetic structuring and loss of variation. RESULTS: We found a pattern of isolation-by-distance across the whole Baltic population and genetic differentiation between local populations, even within the southern Baltic. Observed heterozygosity was lower than expected throughout the range and internal relatedness values were positive indicating inbreeding. CONCLUSIONS: Our results provide long-term, empirical evidence for the theoretically expected links between habitat fragmentation, population subdivision, and gene flow. They also demonstrate a rare case of genetic differentiation between populations of a long-distance migratory species. The Baltic Southern Dunlin differs from many related shorebird species that show near panmixia, reflecting its philopatric life history and the reduced connectivity of its breeding patches. The results have important implications as they suggest that reduced connectivity of breeding habitats can threaten even long-distance migrants if they show strong philopatry during breeding. The Baltic Southern Dunlin warrants urgent conservation efforts that increase functional connectivity and gene flow between breeding areas.


Asunto(s)
Flujo Génico , Variación Genética , Ecosistema , Flujo Genético , Humanos , Endogamia
3.
Mov Ecol ; 4: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27134752

RESUMEN

BACKGROUND: Geolocators are useful for tracking movements of long-distance migrants, but potential negative effects on birds have not been well studied. We tested for effects of geolocators (0.8-2.0 g total, representing 0.1-3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2-4 subspecies each for a total of 23 study taxa. Study species spanned a range of body sizes (26-1091 g) and eight genera, and were tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds with geolocators to control groups while controlling for potential confounding variables. RESULTS: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to negatively affect return rates if the total mass of geolocators and color markers was 2.5-5.8 % of body mass than if tags were 0.3-2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in geolocator effect size was high, suggesting that local factors were important. CONCLUSIONS: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the resulting migratory movement data in some species.

4.
Oecologia ; 174(4): 1159-67, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24292796

RESUMEN

Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.


Asunto(s)
Aves/fisiología , Comportamiento de Nidificación , Conducta Predatoria , Reproducción , Animales , Señales (Psicología) , Finlandia , Modelos Biológicos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...