Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Mol Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658206

RESUMEN

Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies. Here we propose strategies targeting cancer hallmarks beyond proliferation, aiming at re-educating cancer cells towards a less malignant phenotype. These strategies include controlling cell dormancy, transdifferentiation therapy, normalizing the cancer microenvironment, and using migrastatic therapy. Adaptive resistance to these educative strategies does not confer a direct proliferative advantage to resistant cells, as non-resistant cells are not subject to eradication, thereby delaying or preventing the development of therapy-resistant tumors.

2.
Front Immunol ; 15: 1376907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571957

RESUMEN

Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.


Asunto(s)
Cestodos , Infecciones por Cestodos , Melanoma , Mesocestoides , Taenia , Ratones , Animales , Mesocestoides/fisiología , Melanoma/complicaciones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Infecciones por Cestodos/complicaciones , Infecciones por Cestodos/patología
3.
Eur J Clin Invest ; 54(6): e14174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38291340

RESUMEN

BACKGROUND: Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS: We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS: We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS: mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.


Asunto(s)
Neoplasias de la Mama , Mitocondrias , Receptor ErbB-2 , Mitocondrias/metabolismo , Humanos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Animales , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Ratones , Carcinogénesis/metabolismo , Fosforilación Oxidativa , Proliferación Celular , Metabolismo Energético , Respiración de la Célula/fisiología
4.
RSC Med Chem ; 15(1): 322-343, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283219

RESUMEN

Cytochalasans are known as inhibitors of actin polymerization and for their cytotoxic and migrastatic activity. In this study, we synthesized a series of cytochalasin derivatives that lack a macrocyclic moiety, a structural element traditionally considered essential for their biological activity. We focused on substituting the macrocycle with simple aryl-containing sidechains, and we have also synthesized compounds with different substitution patterns on the cytochalasin core. The cytochalasin analogues were screened for their migrastatic and cytotoxic activity. Compound 24 which shares the substitution pattern with natural cytochalasins B and D exhibited not only significant in vitro migrastatic activity towards BLM cells but also demonstrated inhibition of actin polymerization, with no cytotoxic effect observed at 50 µM concentration. Our results demonstrate that even compounds lacking the macrocyclic moiety can exhibit biological activities, albeit less pronounced than those of natural cytochalasins. However, our findings emphasize the pivotal role of substituting the core structure in switching between migrastatic activity and cytotoxicity. These findings hold significant promise for further development of easily accessible cytochalasan analogues as novel migrastatic agents.

5.
Elife ; 122023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428018

RESUMEN

The activation of Src kinase in cells is strictly controlled by intramolecular inhibitory interactions mediated by SH3 and SH2 domains. They impose structural constraints on the kinase domain holding it in a catalytically non-permissive state. The transition between inactive and active conformation is known to be largely regulated by the phosphorylation state of key tyrosines 416 and 527. Here, we identified that phosphorylation of tyrosine 90 reduces binding affinity of the SH3 domain to its interacting partners, opens the Src structure, and renders Src catalytically active. This is accompanied by an increased affinity to the plasma membrane, decreased membrane motility, and slower diffusion from focal adhesions. Phosphorylation of tyrosine 90 controlling SH3-medited intramolecular inhibitory interaction, analogical to tyrosine 527 regulating SH2-C-terminus bond, enables SH3 and SH2 domains to serve as cooperative but independent regulatory elements. This mechanism allows Src to adopt several distinct conformations of varying catalytic activities and interacting properties, enabling it to operate not as a simple switch but as a tunable regulator functioning as a signalling hub in a variety of cellular processes.


Asunto(s)
Dominios Homologos src , Familia-src Quinasas , Familia-src Quinasas/metabolismo , Fosforilación , Tirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo
6.
Front Oncol ; 13: 1118171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860323

RESUMEN

The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.

7.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982142

RESUMEN

MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Transducción de Señal , Metaloproteinasa 14 de la Matriz/metabolismo , Adhesión Celular , Movimiento Celular
8.
Trends Cancer ; 9(4): 293-308, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804341

RESUMEN

Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Movimiento Celular
9.
Cells ; 11(22)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36429126

RESUMEN

Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapéutico , Interleucina-6/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal
10.
Biomed Pharmacother ; 154: 113582, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055111

RESUMEN

Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.


Asunto(s)
Neoplasias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Dihidroorotato Deshidrogenasa , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Respiración , Sales (Química)/metabolismo
12.
Histochem Cell Biol ; 157(2): 153-172, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837514

RESUMEN

The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .


Asunto(s)
Exosomas/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Fibroblastos/patología , Humanos , Melanoma Experimental/patología , Células Tumorales Cultivadas
13.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360570

RESUMEN

Cancer cell invasion through tissue barriers is the intrinsic feature of metastasis, the most life-threatening aspect of cancer. Detailed observation and analysis of cancer cell behaviour in a 3D environment is essential for a full understanding of the mechanisms of cancer cell invasion. The inherent limits of optical microscopy resolution do not allow to for in-depth observation of intracellular structures, such as invadopodia of invading cancer cells. The required resolution can be achieved using electron microscopy techniques such as FIB-SEM. However, visualising cells in a 3D matrix using FIB-SEM is challenging due to difficulties with localisation of a specific cell deep within the resin block. We have developed a new protocol based on the near-infrared branding (NIRB) procedure that extends the pattern from the surface grid deep inside the resin. This 3D burned pattern allows for precise trimming followed by targeted 3D FIB-SEM. Here we present detailed 3D CLEM results combining confocal and FIB-SEM imaging of cancer cell invadopodia that extend deep into the collagen meshwork.


Asunto(s)
Neoplasias de la Mama/patología , Fibrosarcoma/patología , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Podosomas/patología , Espectroscopía Infrarroja Corta/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Invasividad Neoplásica , Células Tumorales Cultivadas
14.
Cells ; 10(8)2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34440616

RESUMEN

Metastasis accounts for the highest mortality rates in solid tumor cancer patients. However, research and development have neglected this most lethal characteristic and, instead, have concentrated on the hallmarks of cancer that make tumor cells highly proliferative and distinctive from nonmalignant cells. The concentration on invasion and metastasis can be one of the most meaningful advancements in cancer investigation. Importantly, metastasis-free survival (MFS) was recently approved by the Food and Drug Administration (FDA) as a novel primary endpoint in clinical trials and has been used to evaluate the prognosis of patients with nonmetastatic castration-resistant prostate cancer and soft tissue sarcoma. This new definition enables to shift the focus of research and development in cancer therapeutics toward metastasis and to change the emphasis from using tumor shrinkage as a benchmark for indicating the efficacy of treatment to using MFS as a more representative endpoint for antimetastatic drugs. This perspective outlines the possibility to use this novel endpoint in other solid cancers, and examples of large clinical trials are given in which MFS is defined as an endpoint and/or in which antimetastatic strategies are being examined. These advances now open the door for the rapid development of antimetastatic therapies, which could be used in combination with standard cytotoxic cancer therapies. With pioneer research on metastasis prevention on the rise and the underlying biomechanisms of tumor cell motility and invasion explored further than ever before, we believe an intensified focus on antimetastatic properties will shape this era of cancer translational research.


Asunto(s)
Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Ensayos Clínicos como Asunto , Determinación de Punto Final , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Supervivencia sin Progresión , Proyectos de Investigación , Investigación Biomédica Traslacional
15.
Future Med Chem ; 13(19): 1655-1677, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34427101

RESUMEN

Hepatocellular carcinoma is a highly aggressive and difficult-to-treat type of cancer. Incorporating urea functionality into the backbone of organoselenium compounds is expected to develop promising chemotherapeutic leads against liver cancer. Methods: Urea-functionalized organoselenium compounds were synthesized in good yields, and their cytotoxicity was evaluated against HepG2 cells. Results: 1,1'-(Diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) exhibited efficient anti-HepG2 activity in sub-micromolar concentrations, with no toxicity to normal human skin fibroblasts. The molecular mechanisms of the diselenide-based urea 14 were evaluated using colony formation, wound healing, 3D spheroid invasion assays, cell cycle analysis and apoptosis induction. Its redox properties were also assessed by using different bioassays. Conclusion: Our study revealed promising anticancer, antimigratory and anti-invasiveness properties of 1,1'-(diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) against HepG2.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Urea/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Estructura Molecular , Compuestos de Organoselenio/química , Urea/química
16.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207220

RESUMEN

COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.


Asunto(s)
COVID-19/patología , Moduladores de los Receptores de Estrógeno/farmacología , SARS-CoV-2/efectos de los fármacos , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , COVID-19/complicaciones , COVID-19/virología , Moduladores de los Receptores de Estrógeno/metabolismo , Moduladores de los Receptores de Estrógeno/uso terapéutico , Femenino , Humanos , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
17.
PLoS Genet ; 17(7): e1009639, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232960

RESUMEN

ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Hipertensión/genética , Enfermedades Pulmonares Intersticiales/genética , Animales , Niño , Femenino , Homocigoto , Humanos , Leucocitosis/genética , Leucocitosis/inmunología , Enfermedades Pulmonares Intersticiales/patología , Linfocitosis/genética , Linfocitosis/inmunología , Masculino , Ratones , Linaje , Secuenciación del Exoma , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283046

RESUMEN

BACKGROUND: Uveal melanoma (UM) is the most common intraocular tumour in adults with a poor prognosis and extremely high mortality rate due to the development of metastatic disease. However, despite relatively good knowledge about the histological and genetic risk factors for metastasis development, there is no specific biomarker that would allow early detection of UM progression. Recently, exosomes and their molecular cargo have been widely studied in the search for potential biomarkers in several cancers. The purpose of this study was to analyze the inflammation-related protein cargo of exosomes derived from the serum of primary and metastatic UM patients and healthy donors. METHODS: The exosomes were isolated from the serum of primary and metastatic UM patients and healthy donors. Using multiplex immunoassay technology, we analyzed the concentration of 37 inflammation-related proteins in obtained exosomes. RESULTS: The analysis of protein cargo showed several molecules related to inflammation, such as interferon-gamma, interleukin 2, 22 and 12(p40), Pentraxin-3, TNFSF13B and TNFSF8 which were significantly enriched in metastatic UM exosomes. We showed a significant correlation between the disease stage and the concentration of these inflammation-related proteins from exosomal cargo. CONCLUSIONS: Based on the obtained results, we propose the panel of exosomal proteins for early detection of uveal melanoma progression into metastatic disease.

19.
Biomolecules ; 11(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802847

RESUMEN

Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid-mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.


Asunto(s)
Colágeno/metabolismo , Melanoma/genética , Inhibidores de Proteínas Quinasas/farmacología , RNA-Seq/métodos , Microambiente Tumoral/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Humanos , Imidazoles/farmacología , Melanoma/patología , Naftalenos/farmacología , Fenotipo , Pirazoles/farmacología , Piridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microambiente Tumoral/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Biomacromolecules ; 22(6): 2325-2337, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33881829

RESUMEN

Fluorine-19 magnetic resonance imaging (19F MRI) enables detailed in vivo tracking of fluorine-containing tracers and is therefore becoming a particularly useful tool in noninvasive medical imaging. In previous studies, we introduced biocompatible polymers based on the hydrophilic monomer N-(2-hydroxypropyl)methacrylamide (HPMA) and the thermoresponsive monomer N-(2,2-difluoroethyl)acrylamide (DFEA). These polymers have abundant magnetically equivalent fluorine atoms and advantageous properties as 19F MRI tracers. Furthermore, in this pilot study, we modified these polymers by introducing a redox-responsive monomer. As a result, our polymers changed their physicochemical properties once exposed to an oxidative environment. Reactive oxygen species (ROS)-responsive polymers were prepared by incorporating small amounts (0.9-4.5 mol %) of the N-[2-(ferrocenylcarboxamido)ethyl]acrylamide (FcCEA) monomer, which is hydrophobic and diamagnetic in the reduced electroneutral (Fe(II), ferrocene) state but hydrophilic and paramagnetic in the oxidized (Fe(III), ferrocenium cation) state. This property can be useful for theranostic purposes (therapy and diagnostic purposes), especially, in terms of ROS-responsive drug-delivery systems. In the reduced state, these nanoparticles remain self-assembled with the encapsulated drug but release the drug upon oxidation in ROS-rich tumors or inflamed tissues.


Asunto(s)
Nanopartículas , Polímeros , Sistemas de Liberación de Medicamentos , Compuestos Férricos , Imagen por Resonancia Magnética , Proyectos Piloto , Medicina de Precisión , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...