Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Med (Berl) ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302418

RESUMEN

The deubiquitinating enzyme CYLD negatively regulates NF-κB signaling by removing activating ubiquitin chains from several members of the NF-κB pathway. Thereby, CYLD is critical for the maintenance and differentiation of various immune cells. Despite the importance of the NF-κB pathway in microglia regulation, the role of CYLD in microglia has not been investigated so far. In this study, we investigated whether CYLD in microglia can protect against neuroinflammation using a newly generated conditional mouse strain (Rosa26-Cyld-tdTomato) that allows cell type-specific CYLD overexpression. Here, we show that overexpression of CYLD in microglia did not alter microglia numbers or microglia morphology in different brain regions. Additionally, CYLD overexpression did not modify the microglial response to LPS-induced neuroinflammation or the disease severity in experimental autoimmune encephalomyelitis (EAE). Finally, also immune cell infiltration into the CNS during EAE and under steady state conditions remained unaffected by microglial CYLD overexpression. Our findings suggest that CYLD overexpression does not alter microglial function, and thus does not represent a viable therapeutic strategy in neuroinflammatory conditions. This study highlights the complexity of ubiquitin-mediated signaling in neuroinflammation and the need for cell-type-specific investigations. The Rosa26-Cyld-tdTomato mouse model offers a valuable tool for studying CYLD's role across various tissues and cell types. KEY MESSAGES: Novel mouse strain for cell type-specific overexpression of the deubiquitinating enzyme CYLD. CYLD overexpression in microglia did not alter microglia numbers or morphology in the steady state. CYLD overexpression in microglia did not protect mice from LPS-induced neuroinflammation or EAE. CYLD overexpression in microglia did not influence their gene expression during neuroinflammation.

2.
Sci Rep ; 14(1): 20123, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209951

RESUMEN

Modulation of the Nrf2 pathway, a master regulator of the antioxidant response and cellular metabolism, has been suggested as a promising therapeutic strategy in tauopathies, a heterogeneous group of neurodegenerative disorders characterized by intracellular proteinaceous inclusions of abnormally phosphorylated tau. Here, we explored the neuroprotective potential of different Nrf2-pathway activators in human immortalized dopaminergic neurons against annonacin-induced toxicity, a mitochondrial inhibitor associated with a PSP-like syndrome and capable of mimicking tauopathy-like features. Interestingly, we observed heterogenous and compound-dependent neuroprotective effects among the different Nrf2-pathway activators. With the exception of Fyn inhibitors, all the selected Nrf2-pathway activators improved cell viability and the oxidative status, and reduced the annonacin-induced tau hyperphosphorylation and neurite degeneration, particularly the p62-activators. However, improvement of the impaired mitochondrial function was only observed by the Bach-1 inhibitor. Surprisingly, we found evidence that ezetimibe, an approved drug for hypercholesterolemia, prevents the transcriptional upregulation of 4R-tau triggered by annonacin insult. Overall, our results suggest that the neuroprotective effects of the Nrf2-pathway activators against annonacin toxicity may rely on the specific mechanism of action, intrinsic to each compound, and possibly on the concomitant modulation of additional signaling pathways. Further research will be needed to fully understand how synergistic modulation of metabolic adaptation and cell survival can be exploit to develop new therapeutical strategies for tauopathies and eventually other neurodegenerative diseases.


Asunto(s)
Supervivencia Celular , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Proteínas tau/metabolismo , Fosforilación/efectos de los fármacos , Línea Celular , Benzofuranos/farmacología , Furanos , Lactonas
3.
Viruses ; 15(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376690

RESUMEN

BACKGROUND: The outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the global COVID-19 pandemic. The urgency for an effective SARS-CoV-2 vaccine has led to the development of the first series of vaccines at unprecedented speed. The discovery of SARS-CoV-2 spike-glycoprotein mutants, however, and consequentially the potential to escape vaccine-induced protection and increased infectivity, demonstrates the persisting importance of monitoring SARS-CoV-2 mutations to enable early detection and tracking of genomic variants of concern. RESULTS: We developed the CoVigator tool with three components: (1) a knowledge base that collects new SARS-CoV-2 genomic data, processes it and stores its results; (2) a comprehensive variant calling pipeline; (3) an interactive dashboard highlighting the most relevant findings. The knowledge base routinely downloads and processes virus genome assemblies or raw sequencing data from the COVID-19 Data Portal (C19DP) and the European Nucleotide Archive (ENA), respectively. The results of variant calling are visualized through the dashboard in the form of tables and customizable graphs, making it a versatile tool for tracking SARS-CoV-2 variants. We put a special emphasis on the identification of intrahost mutations and make available to the community what is, to the best of our knowledge, the largest dataset on SARS-CoV-2 intrahost mutations. In the spirit of open data, all CoVigator results are available for download. The CoVigator dashboard is accessible via covigator.tron-mainz.de. CONCLUSIONS: With increasing demand worldwide in genome surveillance for tracking the spread of SARS-CoV-2, CoVigator will be a valuable resource of an up-to-date list of mutations, which can be incorporated into global efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Pandemias , COVID-19/epidemiología , Genómica , Bases del Conocimiento , Mutación , Glicoproteína de la Espiga del Coronavirus
4.
PLoS One ; 18(5): e0283943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200357

RESUMEN

The activation of the unfolded protein response, particularly via the PERK pathway, has been suggested as a promising therapeutic approach in tauopathies, a group of neurodegenerative disorders characterized by the abnormal phosphorylation and aggregation of tau protein. So far, a shortage of available direct PERK activators has been limiting the progresses in this field. Our study aimed at the development of a cell-free screening assay enabling the detection of novel direct PERK activators. By applying the catalytic domain of recombinant human PERK, we initially determined ideal conditions of the kinase assay reaction, including parameters such as optimal kinase concentration, temperature, and reaction time. Instead of using PERK's natural substrate proteins, eIF2α and NRF2, we applied SMAD3 as phosphorylation-accepting protein and successfully detected cell-free PERK activation and inhibition by selected modulators (e.g., calcineurin-B, GSK2606414). The developed assay revealed to be sufficiently stable and robust to assess an activating EC50-value. Additionally, our results suggested that PERK activation may take place independent of the active site which can be blocked by a kinase inhibitor. Finally, we confirmed the applicability of the assay by measuring PERK activation by MK-28, a recently described PERK activator. Overall, our data show that a cell-free luciferase-based assay with the recombinant human PERK kinase domain and SMAD3 as substrate protein is capable of detecting PERK activation, which enables to screen large compound libraries for direct PERK activators, in a high-throughput-based approach. These activators will be useful for deepening our understanding of the PERK signaling pathway, and may also lead to the identification of new therapeutic drug candidates for neurodegenerative tauopathies.


Asunto(s)
Estrés del Retículo Endoplásmico , Tauopatías , Humanos , Respuesta de Proteína Desplegada , Transducción de Señal , Inhibidores de Proteínas Quinasas , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo
5.
Acta Neuropathol Commun ; 11(1): 40, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906636

RESUMEN

The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad de Parkinson , Proteínas tau , Humanos , Encéfalo/metabolismo , Genotipo , Haplotipos , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Proteínas tau/genética
6.
PLoS One ; 16(9): e0249254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570776

RESUMEN

Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 1,036,030 SARS-CoV-2 genome assemblies and 30,806 NGS datasets from GISAID and European Nucleotide Archive (ENA) focusing on non-synonymous mutations in the spike protein. Only around 2.5% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.6% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 5,472 distinct variants were found in total. The majority of the observed variants were recurrent, but only 21 and 14 recurrent variants were found in at least 1% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 2.6% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the continuous importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.


Asunto(s)
COVID-19/virología , Genoma Viral , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tasa de Mutación , Pandemias , Dominios Proteicos , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Linfocitos T/inmunología
7.
Heliyon ; 7(7): e07469, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34286134

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare hereditary neurodegenerative disease characterized by an accumulation of iron within the brain. In the present report, we describe a family with 4 affected siblings presenting with variable clinical manifestations, e.g., parkinsonian features, dystonia and slow disease progression over 5 years. Exome sequencing revealed a causative variant in the pantothenate kinase 2 gene (PANK2). Variant NM_024960.6:c.710C > T was homozygous in all affected subjects. Our report describes the first genetically confirmed cases of PKAN in the Egyptian population. Studying genetics of neurodegenerative diseases in different ethnicities is very important for determining clinical phenotypes and understanding pathomechanisms of these diseases.

8.
Front Cell Dev Biol ; 9: 561086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748099

RESUMEN

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson's disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.

9.
Neurogenetics ; 22(2): 143-147, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33779842

RESUMEN

Ataxia telangiectasia is a rare autosomal recessive multisystem disorder caused by mutations in the gene of ATM serine/threonine kinase. It is characterized by neurodegeneration, leading to severe ataxia, immunodeficiency, increased cancer susceptibility, and telangiectasia. Here, we discovered a co-segregation of two ATM gene variants with ataxia telangiectasia in an Egyptian family. While one of these variants (NM_000051.4(ATM_i001):p.(Val128*)) has previously been reported as pathogenic, the other one (NM_000051.4(ATM_i001):p.(Val1729Leu)) is regarded as a variant of uncertain significance. Our findings in this family provide additional evidence for causality of the second variant and argue that its status should be changed to pathogenic.


Asunto(s)
Ataxia Telangiectasia/genética , Mutación Missense , Mutación Puntual , Causalidad , Egipto , Femenino , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Secuenciación del Exoma , alfa-Fetoproteínas/genética
11.
Cell Death Dis ; 11(2): 84, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015326

RESUMEN

Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1-95 and 61-140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Espacio Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Agregado de Proteínas , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
12.
Neuropharmacology ; 167: 107842, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704274

RESUMEN

Tauopathies are neurodegenerative brain diseases that are characterized by the formation of intraneuronal inclusions containing the microtubule-associated protein tau. This major hallmark defines tau pathology which is predominant in primary tauopathies, while in secondary forms additional driving forces are involved. In the course of the disease, different brain areas degenerate and lead to severe defects of language, behavior and movement. Although neuropathologically heterogeneous, primary tauopathies share a common feature, which is the generation of abnormal tau species that aggregate and progress into filamentous deposits in neurons. Mechanisms that are involved in this disease-related process offer a broad range of targets for disease-modifying therapeutics. The present review provides an up-to-date overview of currently known targets in primary tauopathies and their possible therapeutic modulation. It is structured into four major targets, the post-translational modifications of tau and tau aggregation, protein homeostasis, disease propagation, and tau genetics. Chances, as well as obstacles in the development of effective therapies are highlighted. Some therapeutic strategies, e.g., passive or active immunization, have already reached clinical development, raising hopes for affected patients. Other concepts, e.g., distinct modulators of proteostasis, are at the ready to be developed into promising future therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Asunto(s)
Terapia Genética/tendencias , Inmunoterapia/tendencias , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Procesamiento Proteico-Postraduccional , Tauopatías/terapia , Proteínas tau/antagonistas & inhibidores
13.
Sci Rep ; 9(1): 13359, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527656

RESUMEN

Neuroblasts born in the subventricular zone of adult mammals migrate via the rostral migratory stream into the granular cell layer or periglomerular layer of the olfactory bulb to differentiate into interneurons. To analyze if new neurons in the granular cell layer or periglomerular layer have different origins, we inserted a physical barrier into the rostral migratory stream, depleted cell proliferation with cytarabine infusions, labeled newborn cells with bromodeoxyuridine, and sacrificed mice after short-term (0, 2, or 14 days) or long-term (55 or 105 days) intervals. After short-term survival, the subventricular zone and rostral migratory stream rapidly repopulated with bromodeoxyuridine+ cells after cytarabine-induced depletion. Nestin, glial fibrillary acidic protein and the PAX6 were expressed in bromodeoxyuridine+ cells within the rostral migratory stream downstream of the physical barrier. After long-term survival after physical barrier implantation, bromodeoxyuridine+ neurons were significantly reduced in the granular cell layer, but bromodeoxyuridine+ and dopaminergic neurons in the periglomerular layer remained unaffected by the physical barrier. Thus, newborn neurons for the granular cell layer are mainly recruited from neural stem cells located in the subventricular zone, but new neurons for the periglomerular layer with dopaminergic predisposition can rise as well from neuronal stem or precursor cells in the rostral migratory stream.


Asunto(s)
Movimiento Celular/fisiología , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Interneuronas/metabolismo , Ventrículos Laterales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/fisiología
14.
Prog Neurobiol ; 180: 101644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238088

RESUMEN

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Humanos , Neuropatología/métodos
16.
Neurology ; 93(2): e135-e142, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31127070

RESUMEN

OBJECTIVE: To verify the previously reported association between long-term use of ß2-adrenoreceptor (ß2AR) agonist and antagonist with reduced and increased risk of Parkinson disease (PD), respectively. METHODS: We obtained odds ratios (ORs) associating time of ß2AR agonist and antagonist use with PD risk in nationwide Danish health registries. RESULTS: We included 2,790 patients with PD and 11,160 controls. Long-term ß2AR agonist use was associated with reduced PD risk (OR 0.57, 95% confidence interval [CI] 0.40-0.82) in this cohort. Unexpectedly, short-term ß2AR agonist use was equally associated (OR 0.64, 95% CI 0.42-0.98). Because ß2AR agonists are prescribed mostly for chronic obstructive pulmonary disease (COPD), often caused by long-term nicotine abuse, we analyzed other markers of smoking. Diagnosis of COPD (OR 0.51, 95% CI 0.37-0.69) and use of inhaled corticosteroids (OR 0.78, 95% CI 0.59-1.02) or inhaled anticholinergics (OR 0.41, 95% CI 0.25-0.67) were also inversely associated with PD. Increased PD risk was not found for all ß2AR antagonists but only for propranolol and metoprolol. Associations were markedly stronger for short-term than long-term use. CONCLUSION: We confirmed ß2AR agonist use to be associated with reduced PD risk and ß2AR antagonist use with increased PD risk. However, our data indicate the association of ß2AR agonists to be indirectly mediated by smoking, which is repeatedly associated with reduced risk of PD. The association of ß2AR antagonists indicates reverse causation, with PD symptoms triggering their prescription rather than ß2AR antagonists causing PD. Thus, current epidemiologic data do not support a causal link between ß2AR agonists and antagonists and PD risk.


Asunto(s)
Agonistas Adrenérgicos beta/uso terapéutico , Antagonistas Adrenérgicos beta/uso terapéutico , Enfermedad de Parkinson/epidemiología , Administración por Inhalación , Corticoesteroides/uso terapéutico , Anciano , Anciano de 80 o más Años , Antagonistas Colinérgicos/uso terapéutico , Dinamarca/epidemiología , Duración de la Terapia , Femenino , Humanos , Masculino , Metoprolol/uso terapéutico , Persona de Mediana Edad , Propranolol/uso terapéutico , Factores Protectores , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Sistema de Registros , Factores de Riesgo , Fumar/epidemiología
17.
Neuropharmacology ; 149: 13-26, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30731136

RESUMEN

Pathological aggregates of alpha-synuclein are the common hallmarks of synucleinopathies, including Parkinson's disease. There is currently no disease-modifying therapy approved for neurodegenerative synucleinopathies. The induction of macroautophagy by small compounds may be a strategy to reduce the cellular alpha-synuclein burden and to confer neuroprotection. Therefore, in the present study, we investigated a broad spectrum of druggable molecular signaling pathways reported to induce macroautophagy in human cells and compared their protective efficacy against alpha-synuclein-induced toxicity in cultured human postmitotic dopaminergic neurons. Several compounds affecting different pathways were able to activate macroautophagy. All compounds that activated autophagy also protected against alpha-synuclein-induced toxicity. The compounds with the lowest effective concentrations were PI-103, L-690,330, and NF 449, making them particularly interesting for further investigations, including in vivo models. Our findings demonstrate that activation of macroautophagy, as a neuroprotective approach in synucleinopathies, is accessible to pharmacotherapy. Moreover, pharmacological activation of macroautophagy via diverse signaling pathways is effective to protect human dopaminergic neurons against alpha-synuclein-induced toxicity.


Asunto(s)
Autofagia/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , alfa-Sinucleína/efectos de los fármacos , alfa-Sinucleína/metabolismo , Bencenosulfonatos/farmacología , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Difosfonatos/farmacología , Furanos/farmacología , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroprotección , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal
18.
J Steroid Biochem Mol Biol ; 188: 59-70, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30615932

RESUMEN

Androgen receptor (AR) antagonists are used for hormone therapy of prostate cancer (PCa). However resistance to the treatment occurs eventually. One possible reason is the occurrence of AR mutations that prevent inhibition of AR-mediated transactivation by antagonists. To offer in future more options to inhibit AR signaling, novel chemical lead structures for new AR antagonists would be beneficial. Here we analyzed structure-activity relationships of a battery of 36 non-steroidal structural variants of methyl anthranilate including 23 synthesized compounds. We identified structural requirements that lead to more potent AR antagonists. Specific compounds inhibit the transactivation of wild-type AR as well as AR mutants that render treatment resistance to hydroxyflutamide, bicalutamide and the second-generation AR antagonist enzalutamide. This suggests a distinct mode of inhibiting the AR compared to the clinically used compounds. Competition assays suggest binding of these compounds to the AR ligand binding domain and inhibit PCa cell proliferation. Moreover, active compounds induce cellular senescence despite inhibition of AR-mediated transactivation indicating a transactivation-independent AR-pathway. In line with this, fluorescence resonance after photobleaching (FRAP) - assays reveal higher mobility of the AR in the cell nuclei. Mechanistically, fluorescence resonance energy transfer (FRET) - assays indicate that the amino-carboxy (N/C)-interaction of the AR is not affected, which is in contrast to known AR-antagonists. This suggests a mechanistically novel mode of AR-antagonism. Together, these findings indicate the identification of a novel chemical platform as a new lead structure that extends the diversity of known AR antagonists and possesses a distinct mode of antagonizing AR-function.


Asunto(s)
Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/farmacología , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Halogenación , Humanos , Masculino , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
19.
Sci Rep ; 8(1): 16525, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30410011

RESUMEN

Pesticide exposure is associated with increased risk of Parkinson's disease (PD). We investigated in Egypt whether common variants in genes involved in pesticide detoxification or transport might modify the risk of PD evoked by pesticide exposure. We recruited 416 PD patients and 445 controls. Information on environmental factors was collected by questionnaire-based structured interviews. Candidate single-nucleotide polymorphisms (SNPs) in 15 pesticide-related genes were genotyped. We analyzed the influence of environmental factors and SNPs as well as the interaction of pesticide exposure and SNPs on the risk of PD. The risk of PD was reduced by coffee consumption [OR = 0.63, 95% CI: 0.43-0.90, P = 0.013] and increased by pesticide exposure [OR = 7.09, 95% CI: 1.12-44.01, P = 0.036]. The SNP rs1126680 in the butyrylcholinesterase gene BCHE reduced the risk of PD irrespective of pesticide exposure [OR = 0.38, 95% CI: 0.20-0.70, P = 0.002]. The SNP rs1803274, defining K-variant BCHE, interacted significantly with pesticide exposure (P = 0.007) and increased the risk of PD only in pesticide-exposed individuals [OR = 2.49, 95% CI: 1.50-4.19, P = 0.0005]. The K-variant BCHE reduces serum activity of butyrylcholinesterase, a known bioscavenger for pesticides. Individuals with K-variant BCHE appear to have an increased risk for PD when exposed to pesticides.


Asunto(s)
Butirilcolinesterasa/genética , Exposición a Riesgos Ambientales/efectos adversos , Enfermedad de Parkinson/genética , Plaguicidas/efectos adversos , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Butirilcolinesterasa/sangre , Estudios de Casos y Controles , Egipto , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/etiología , Encuestas y Cuestionarios
20.
Cell Death Dis ; 9(7): 757, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988147

RESUMEN

Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson's disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death.Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin-proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death.We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.


Asunto(s)
Autofagia/fisiología , Exosomas/metabolismo , alfa-Sinucleína/metabolismo , Autofagosomas/metabolismo , Western Blotting , Línea Celular , Humanos , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA