Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(5): e11356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694748

RESUMEN

The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.

2.
Environ Pollut ; 344: 123443, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278400

RESUMEN

Anthropogenic pollution is identified as an important threat to bird and other wildlife populations. Many metals and toxic elements, along with poly- and perfluoroalkyl substances (PFASs) are known to induce immunomodulation and have previously been linked to increased pathogen prevalence and infectious disease severity. In this study, the house sparrow (Passer domesticus) was investigated at the coast of Helgeland in northern Norway. This population is commonly infected with the parasitic nematode "gapeworm" (Syngamus trachea), with a prevalence of 40-60 % during summer months. Gapeworm induces severe respiratory disease in birds and has been previously demonstrated to decrease survival and reproductive success in wild house sparrows. The aim of this study was to investigate whether a higher exposure to pollution with PFASs, metals and other elements influences gapeworm infection in wild house sparrows. We conducted PFASs and elemental analysis on whole blood from 52 house sparrows from Helgeland, including analyses of highly toxic metals such as lead (Pb), mercury (Hg) and arsenic (As). In addition, we studied gapeworm infection load by counting the parasite eggs in faeces from each individual. We also studied the expression of microRNA 155 (miR155) as a key regulator in the immune system. Elevated blood concentrations of Pb were found to be associated with an increased prevalence of gapeworm infection in the house sparrow. The expression of miR155 in the plasma of the house sparrow was only weakly associated with Pb. In contrast, we found relatively low PFASs concentrations in the house sparrow blood (∑ PFASs 0.00048-354 µg/L) and PFASs were not associated to miR155 nor infection rate. The current study highlights the potential threat posed by Pb as an immunotoxic pollutant in small songbirds.


Asunto(s)
Fluorocarburos , Gorriones , Animales , Plomo/toxicidad , Plomo/metabolismo , Noruega/epidemiología , Fluorocarburos/metabolismo
3.
J Evol Biol ; 36(4): 650-662, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811205

RESUMEN

An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.


Asunto(s)
Animales Salvajes , Metabolismo Basal , Animales , Aves , Fenotipo
4.
Mol Ecol ; 31(23): 6224-6238, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34997994

RESUMEN

Telomere dynamics could underlie life-history trade-offs among growth, size and longevity, but our ability to quantify such processes in natural, unmanipulated populations is limited. We investigated how 4 years of artificial selection for either larger or smaller tarsus length, a proxy for body size, affected early-life telomere length (TL) and several components of fitness in two insular populations of wild house sparrows over a study period of 11 years. The artificial selection was expected to shift the populations away from their optimal body size and increase the phenotypic variance in body size. Artificial selection for larger individuals caused TL to decrease, but there was little evidence that TL increased when selecting for smaller individuals. There was a negative correlation between nestling TL and tarsus length under both selection regimes. Males had longer telomeres than females and there was a negative effect of harsh weather on TL. We then investigated whether changes in TL might underpin fitness effects due to the deviation from the optimal body size. Mortality analyses indicated disruptive selection on TL because both short and long early-life telomeres tended to be associated with the lowest mortality rates. In addition, there was a tendency for a negative association between TL and annual reproductive success, but only in the population where body size was increased experimentally. Our results suggest that natural selection for optimal body size in the wild may be associated with changes in TL during growth, which is known to be linked to longevity in some bird species.


Asunto(s)
Longevidad , Passeriformes , Humanos , Masculino , Femenino , Animales , Longevidad/genética , Selección Genética , Telómero , Passeriformes/genética , Acortamiento del Telómero/genética
5.
J Anim Ecol ; 90(12): 2767-2781, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455579

RESUMEN

The effects of spatial structure on metapopulation dynamics depend upon the interaction between local population dynamics and dispersal, and how this relationship is affected by the geographical isolation and spatial heterogeneity in habitat characteristics. Our aim is to examine how emigration and immigration of house sparrows Passer domesticus in a Norwegian archipelagic metapopulation are affected by key factors predicted by classic metapopulation models to affect dispersal-spatial and temporal variation in population size, inter-island distance, local demography and habitat characteristics. This metapopulation can be divided into two major habitat types: (a) islands closer to the mainland where sparrows breed in colonies on farms, and (b) islands without farms, situated farther away from the mainland where sparrows are exposed to harsher environmental conditions. Dispersal was spatially structured within the metapopulation; there was proportionally and numerically less emigration and immigration involving farm islands, as compared to non-farm islands. Furthermore, emigration and immigration occurred mostly between nearby islands. Moreover, emigration in response to spatial differences in mean population size differed between the habitat types, but populations with large mean received more immigrants in both habitat types. The number of emigrants and immigrants was negatively related to long-term recruit production, which was not the case in non-farm islands. The proportion and number of emigrants was positively related to temporal increases in recruit production on farm islands, however not on non-farm islands. Our results demonstrate that spatial heterogeneity in environmental conditions influences how spatial variation in long-term mean population size, and temporal and spatial variation in recruit production, affects dispersal dynamics. The spatial structure of this metapopulation is therefore best described by a spatially explicit model in which the exchange of individuals within each habitat type is strongly affected by the degree of geographical isolation, population size and recruit production. However, these relationships differed between the two habitat types; non-farm islands showing similarities to a mainland-island model type of structure, whereas farm islands showed features more associated with source-sink or balanced dispersal models. Such differential dispersal dynamics between habitat types are expected to have important consequences for the ecological and evolutionary dynamics within this metapopulation.


Asunto(s)
Gorriones , Animales , Ecosistema , Noruega , Densidad de Población , Dinámica Poblacional
6.
Mol Ecol ; 30(19): 4740-4756, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270821

RESUMEN

Dispersal has a crucial role determining ecoevolutionary dynamics through both gene flow and population size regulation. However, to study dispersal and its consequences, one must distinguish immigrants from residents. Dispersers can be identified using telemetry, capture-mark-recapture (CMR) methods, or genetic assignment methods. All of these methods have disadvantages, such as high costs and substantial field efforts needed for telemetry and CMR surveys, and adequate genetic distance required in genetic assignment. In this study, we used genome-wide 200K Single Nucleotide Polymorphism data and two different genetic assignment approaches (GSI_SIM, Bayesian framework; BONE, network-based estimation) to identify the dispersers in a house sparrow (Passer domesticus) metapopulation sampled over 16 years. Our results showed higher assignment accuracy with BONE. Hence, we proceeded to diagnose potential sources of errors in the assignment results from the BONE method due to variation in levels of interpopulation genetic differentiation, intrapopulation genetic variation and sample size. We show that assignment accuracy is high even at low levels of genetic differentiation and that it increases with the proportion of a population that has been sampled. Finally, we highlight that dispersal studies integrating both ecological and genetic data provide robust assessments of the dispersal patterns in natural populations.


Asunto(s)
Gorriones , Animales , Teorema de Bayes , Flujo Genético , Linaje , Densidad de Población , Gorriones/genética
7.
Ecol Lett ; 24(10): 2077-2087, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34312969

RESUMEN

Generation time determines the pace of key demographic and evolutionary processes. Quantified as the weighted mean age at reproduction, it can be studied as a life-history trait that varies within and among populations and may evolve in response to ecological conditions. We combined quantitative genetic analyses with age- and density-dependent models to study generation time variation in a bird metapopulation. Generation time was heritable, and males had longer generation times than females. Individuals with longer generation times had greater lifetime reproductive success but not a higher expected population growth rate. Density regulation acted on recruit production, suggesting that longer generation times should be favoured when populations are closer to carrying capacity. Furthermore, generation times were shorter when populations were growing and longer when populations were closer to equilibrium or declining. These results support classic theory predicting that density regulation is an important driver of the pace of life-history strategies.


Asunto(s)
Evolución Biológica , Rasgos de la Historia de Vida , Animales , Aves , Femenino , Humanos , Masculino , Crecimiento Demográfico , Reproducción
8.
Proc Natl Acad Sci U S A ; 117(25): 14584-14592, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513746

RESUMEN

Inbreeding may increase the extinction risk of small populations. Yet, studies using modern genomic tools to investigate inbreeding depression in nature have been limited to single populations, and little is known about the dynamics of inbreeding depression in subdivided populations over time. Natural populations often experience different environmental conditions and differ in demographic history and genetic composition, characteristics that can affect the severity of inbreeding depression. We utilized extensive long-term data on more than 3,100 individuals from eight islands in an insular house sparrow metapopulation to examine the generality of inbreeding effects. Using genomic estimates of realized inbreeding, we discovered that inbred individuals had lower survival probabilities and produced fewer recruiting offspring than noninbred individuals. Inbreeding depression, measured as the decline in fitness-related traits per unit inbreeding, did not vary appreciably among populations or with time. As a consequence, populations with more resident inbreeding (due to their demographic history) paid a higher total fitness cost, evidenced by a larger variance in fitness explained by inbreeding within these populations. Our results are in contrast to the idea that effects of inbreeding generally depend on ecological factors and genetic differences among populations, and expand the understanding of inbreeding depression in natural subdivided populations.


Asunto(s)
Aptitud Genética/fisiología , Depresión Endogámica/fisiología , Gorriones/fisiología , Animales , Femenino , Masculino , Linaje , Dinámica Poblacional , Análisis Espacio-Temporal
9.
Evolution ; 73(3): 452-466, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30592040

RESUMEN

Body size plays a key role in the ecology and evolution of all organisms. Therefore, quantifying the sources of morphological (co)variation, dependent and independent of body size, is of key importance when trying to understand and predict responses to selection. We combine structural equation modeling with quantitative genetics analyses to study morphological (co)variation in a meta-population of house sparrows (Passer domesticus). As expected, we found evidence of a latent variable "body size," causing genetic and environmental covariation between morphological traits. Estimates of conditional evolvability show that allometric relationships constrain the independent evolution of house sparrow morphology. We also found spatial differences in general body size and its allometric relationships. On islands where birds are more dispersive and mobile, individuals were smaller and had proportionally longer wings for their body size. Although on islands where sparrows are more sedentary and nest in dense colonies, individuals were larger and had proportionally longer tarsi for their body size. We corroborated these results using simulations and show that our analyses produce unbiased allometric slope estimates. This study highlights that in the short term allometric relationships may constrain phenotypic evolution, but that in the long term selection pressures can also shape allometric relationships.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Ambiente , Fenotipo , Gorriones/anatomía & histología , Animales , Femenino , Masculino , Noruega , Factores Sexuales
10.
Mol Ecol ; 27(17): 3498-3514, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040161

RESUMEN

Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large-scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco-evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular-scale evolution of genetic architecture.


Asunto(s)
Pico/anatomía & histología , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Gorriones/genética , Animales , Estudios de Asociación Genética , Modelos Genéticos , Noruega , Fenotipo , Análisis de Componente Principal , Gorriones/anatomía & histología
11.
Evolution ; 71(8): 2062-2079, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28568476

RESUMEN

A general assumption in quantitative genetics is the existence of an intermediate phenotype with higher mean individual fitness in the average environment than more extreme phenotypes. Here, we investigate the evolvability and presence of such a phenotype in wild bird populations from an eleven-year experiment with four years of artificial selection for long and short tarsus length, a proxy for body size. The experiment resulted in strong selection in the imposed directions. However, artificial selection was counteracted by reduced production of recruits in offspring of artificially selected parents. This resulted in weak natural selection against extreme trait values. Significant responses to artificial selection were observed at both the phenotypic and genetic level, followed by a significant return toward preexperimental means. During artificial selection, the annual observed phenotypic response closely followed the predicted response from quantitative genetic theory (ryears = 0.96, rcohorts = 0.56). The rapid return to preexperimental means was induced by three interacting mechanisms: selection for an intermediate phenotype, immigration, and recombination between selected and unselected individuals. The results of this study demonstrates the evolvability of phenotypes and that selection may favor an intermediate phenotype in wild populations.


Asunto(s)
Tamaño Corporal , Passeriformes/genética , Selección Genética , Animales , Animales Salvajes , Ambiente , Humanos , Passeriformes/anatomía & histología , Fenotipo
12.
Mol Ecol Resour ; 17(4): 770-782, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27813315

RESUMEN

Experimental evolution studies can be used to explore genomic response to artificial and natural selection. In such studies, loci that display larger allele frequency change than expected by genetic drift alone are assumed to be directly or indirectly associated with traits under selection. However, such studies report surprisingly many loci under selection, suggesting that current tests for allele frequency change may be subject to P-value inflation and hence be anticonservative. One factor known from genomewide association (GWA) studies to cause P-value inflation is population stratification, such as relatedness among individuals. Here, we suggest that by treating presence of an individual in a population after selection as a binary response variable, existing GWA methods can be used to account for relatedness when estimating allele frequency change. We show that accounting for relatedness like this effectively reduces false-positives in tests for allele frequency change in simulated data with varying levels of population structure. However, once relatedness has been accounted for, the power to detect causal loci under selection is low. Finally, we demonstrate the presence of P-value inflation in allele frequency change in empirical data spanning multiple generations from an artificial selection experiment on tarsus length in two free-living populations of house sparrow and correct for this using genomic control. Our results indicate that since allele frequencies in large parts of the genome may change when selection acts on a heritable trait, such selection is likely to have considerable and immediate consequences for the eco-evolutionary dynamics of the affected populations.


Asunto(s)
Evolución Molecular , Frecuencia de los Genes , Modelos Genéticos , Selección Genética , Animales , Flujo Genético , Genética de Población , Gorriones/genética
13.
Sci Total Environ ; 547: 295-304, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26789367

RESUMEN

At high trophic levels, environmental contaminants have been found to affect endocrinological processes. Less attention has been paid to species at lower trophic levels. The house sparrow (Passer domesticus) may be a useful model for investigating effects of POPs in mid-range trophic level species. In male house sparrows, ornamental traits involved in male quality signalling are important for female selection. These traits are governed by endocrinological systems, and POPs may therefore interfere with male quality signalling. The aim of the present study was to use the house sparrow as a mid-range trophic level model species to study the effects of environmental contaminants on endocrinology and male quality signalling. We analysed the levels of selected PCBs, PBDEs and OCPs and investigated the possible effects of these contaminants on circulating levels of steroid hormones (4 progestagens, 4 androgens and 3 estrogens) in male and female adult house sparrows from a population on the island Leka, Norway. Plasma samples were analysed for steroid hormones by GC-MS and liver samples were analysed for environmental contaminants by GC-ECD and GC-MS. In males, we also quantified ornament traits. It was hypothesised that POPs may have endocrine disrupting effects on the local house sparrow population and can thus interfere with the steroid hormone homeostasis. Among female house sparrows, bivariate correlations revealed negative relationships between POPs and estrogens. Among male sparrows, positive relationships between dihydrotestosterone levels and PCBs were observed. In males, positive relationships were also found between steroids and beak length, and between steroids and ornamental traits such as total badge size. This was confirmed by a significant OPLS model between beak length and steroids. Although sparrows are in the mid-range trophic levels, the present study indicates that POPs may affect steroid homeostasis in house sparrows, in particular for females. For males, circulating steroid levels appears to be more associated with biometric parameters related to ornamental traits.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo , Hormonas/metabolismo , Gorriones/fisiología , Andrógenos , Animales , Disruptores Endocrinos/metabolismo , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Femenino , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/toxicidad , Masculino , Noruega , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidad , Gorriones/anatomía & histología
14.
Proc Biol Sci ; 282(1820): 20152331, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26631569

RESUMEN

Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.


Asunto(s)
Tamaño Corporal/genética , Gorriones/genética , Telómero , Animales , Masculino , Selección Genética
15.
PLoS One ; 9(9): e108675, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25265184

RESUMEN

The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1). Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.


Asunto(s)
Envejecimiento/fisiología , Metabolismo Basal/fisiología , Estrés Oxidativo/fisiología , Animales , Índice de Masa Corporal , Femenino , Pinzones , Estudios Longitudinales , Masculino , Especies Reactivas de Oxígeno/metabolismo , Factores Sexuales
16.
Mol Ecol Resour ; 13(3): 429-39, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23480404

RESUMEN

With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations.


Asunto(s)
Genética de Población/métodos , Genoma/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Gorriones/genética , Animales , Secuencia de Bases , ADN Complementario/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Noruega , Análisis de Secuencia de ADN , Especificidad de la Especie
17.
J Exp Biol ; 212(19): 3060-7, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19749098

RESUMEN

Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.


Asunto(s)
Coturnix/crecimiento & desarrollo , Transducción de Señal , Animales , Metabolismo Basal , Tamaño Corporal , Encéfalo/metabolismo , Coturnix/genética , Coturnix/metabolismo , Ingestión de Alimentos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Riñón/anatomía & histología , Riñón/crecimiento & desarrollo , Hígado/anatomía & histología , Hígado/crecimiento & desarrollo , Tamaño de los Órganos , ARN Mensajero/metabolismo , Glándula Tiroides/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Tirotropina de Subunidad beta/genética , Tirotropina de Subunidad beta/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo , Triyodotironina Inversa/sangre , Triyodotironina Inversa/metabolismo , Yodotironina Deyodinasa Tipo II
18.
Biol Lett ; 5(1): 86-9, 2009 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-18842568

RESUMEN

Oxidative stress is suggested as a contributor to the ageing process. Knowledge of the relationship between age and energy expenditure may contribute to our understanding of ageing patterns, due to the link between oxygen consumption and free radical production. However, studies on basal metabolic rate (BMR) and age have generally been cross-sectional, which may confound estimates of the age effect due to disproportionate mortality (also known as 'selective disappearance'). We therefore performed a longitudinal study of BMR using captive zebra finches (Taeniopygia guttata) up to 5 years of age. BMR declined with age in individuals of both sexes when body mass was controlled for. Males gained mass with age while females did not. There was no evidence for disproportionate mortality with respect to BMR in either sex. To our knowledge, this is the first longitudinal study of avian BMR over such a long proportion of the lifespan of the study species.


Asunto(s)
Envejecimiento/metabolismo , Metabolismo Basal , Pinzones/metabolismo , Animales , Tamaño Corporal , Femenino , Pinzones/anatomía & histología , Pinzones/fisiología , Masculino , Factores Sexuales
19.
J Comp Physiol B ; 178(6): 779-84, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18437391

RESUMEN

Black-legged kittiwakes (BLKIs) reduce self-maintenance cost through reductions in mass-specific basal metabolic rate (BMR), body mass and the size of visceral organs during the chick-rearing period. In the present study, we measured kidney in vitro oxygen consumption and plasma 3,3',5-triiodo-L: -thyronine (T3) levels of incubating and chick-rearing female BLKIs, to test whether the decrease in BMR is caused mainly by decreased metabolic intensity or simply by reductions in the size of organs with high metabolic intensity. Body mass and body condition were lower in chick-rearing birds compared with the incubating birds. In contrast to the previous findings, however, the kidney mass did not differ between the two breeding stages. Plasma T3 levels decreased substantially during the breeding season, indicating a reduction in BMR. Over the same period, kidney mass-specific oxygen consumption decreased (by 17.2%) from the incubating to the chick-rearing stage. Thus, the reduction in BMR found in breeding BLKIs seems partly explained by adjustments in metabolic intensity of visceral organs. Lowered metabolic intensity of visceral organs would permit increased allocation of energy to offspring at the expense of their own self-maintenance.


Asunto(s)
Charadriiformes/metabolismo , Metabolismo Energético , Riñón/metabolismo , Reproducción , Adaptación Fisiológica , Animales , Peso Corporal , Regulación hacia Abajo , Femenino , Riñón/anatomía & histología , Conducta Materna , Comportamiento de Nidificación , Tamaño de los Órganos , Consumo de Oxígeno , Triyodotironina/sangre
20.
J Exp Biol ; 208(Pt 24): 4663-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16326947

RESUMEN

Basal metabolic rate (BMR) is a physiological trait believed to show adaptational changes. Few studies have tested whether BMR shows stable between-individual variations. Repeatability indicates that the trait might be heritable and therefore a possible target for natural selection. We tested whether BMR was repeatable over a considerable time of the lifespan of a small passerine bird: the zebra finch Taeniopygia guttata. BMR was measured six times over a 2.5 year period in captive zebra finches. BMR residuals showed significant repeatabilities over a short (1.5 months) and a long (2.5 years) period for each sex as well as for both sexes pooled. In contrast to earlier studies on metabolism, our calculated repeatability (R) did not change significantly from the short to the long period in either males (R from 0.501 to 0.465), females (R from 0.413 to 0.522) or the pooled data (R from 0.571 to 0.567). Our results show that there are consistent between-individual variations in BMR on which natural selection can work, provided that this trait is heritable.


Asunto(s)
Adaptación Fisiológica/fisiología , Metabolismo Basal/fisiología , Pinzones/fisiología , Carácter Cuantitativo Heredable , Análisis de Varianza , Animales , Metabolismo Basal/genética , Femenino , Pinzones/genética , Masculino , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...