Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517259

RESUMEN

The time- and angle-resolved photoemission spectroscopy (trARPES) allows for direct mapping of the electronic band structure and its dynamic response on femtosecond timescales. Here, we present a new ARPES system, powered by a new fiber-based femtosecond light source in the vacuum ultraviolet range, accessing the complete first Brillouin zone for most materials. We present trARPES data on Au(111), polycrystalline Au, Bi2Se3, and TaTe2, demonstrating an energy resolution of 21 meV with a time resolution of <360 fs, at a high repetition rate of 1 MHz. The system is integrated with an extreme ultraviolet high harmonic generation beamline, enabling an excellent tunability of the time-bandwidth resolution.

2.
Nat Commun ; 15(1): 442, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200029

RESUMEN

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

3.
Adv Mater ; 35(33): e2304197, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37282751

RESUMEN

The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu2 OSeO3 visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism. This effect results in a transient modification of the magnetic free energy landscape extending the equilibrium skyrmion pocket to lower magnetic fields. The evolution of the photoinduced phase is monitored for over 15 min and no decay is found. Because such a time is much longer than the duration of any transient effect induced by a laser pulse in a material, it is assumed that the newly discovered skyrmion state is stable for practical purposes, thus breaking ground for a novel approach to control magnetic state on demand at ultrafast timescales and drastically reducing heat dissipation relevant for next-generation spintronic devices.

4.
Nat Commun ; 14(1): 3408, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296135

RESUMEN

Control of magnetization and electric polarization is attractive in relation to tailoring materials for data storage and devices such as sensors or antennae. In magnetoelectric materials, these degrees of freedom are closely coupled, allowing polarization to be controlled by a magnetic field, and magnetization by an electric field, but the magnitude of the effect remains a challenge in the case of single-phase magnetoelectrics for applications. We demonstrate that the magnetoelectric properties of the mixed-anisotropy antiferromagnet LiNi1-xFexPO4 are profoundly affected by partial substitution of Ni2+ ions with Fe2+ on the transition metal site. This introduces random site-dependent single-ion anisotropy energies and causes a lowering of the magnetic symmetry of the system. In turn, magnetoelectric couplings that are symmetry-forbidden in the parent compounds, LiNiPO4 and LiFePO4, are unlocked and the dominant coupling is enhanced by almost two orders of magnitude. Our results demonstrate the potential of mixed-anisotropy magnets for tuning magnetoelectric properties.


Asunto(s)
Electricidad , Campos Magnéticos , Anisotropía , Imanes
5.
Nat Commun ; 14(1): 3387, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296136

RESUMEN

Magnetic topological insulators and semimetals are a class of crystalline solids whose properties are strongly influenced by the coupling between non-trivial electronic topology and magnetic spin configurations. Such materials can host exotic electromagnetic responses. Among these are topological insulators with certain types of antiferromagnetic order which are predicted to realize axion electrodynamics. Here we investigate the highly unusual helimagnetic phases recently reported in EuIn2As2, which has been identified as a candidate for an axion insulator. Using resonant elastic x-ray scattering we show that the two types of magnetic order observed in EuIn2As2 are spatially uniform phases with commensurate chiral magnetic structures, ruling out a possible phase-separation scenario, and we propose that entropy associated with low energy spin fluctuations plays a significant role in driving the phase transition between them. Our results establish that the magnetic order in EuIn2As2 satisfies the symmetry requirements for an axion insulator.


Asunto(s)
Electrónica , Rayos X , Radiografía , Fenómenos Físicos , Transición de Fase
6.
Rev Sci Instrum ; 94(2): 023302, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859005

RESUMEN

We report on the commissioning results of the cold neutron multiplexing secondary spectrometer CAMEA (Continuous Angle Multi-Energy Analysis) at the Swiss Spallation Neutron Source at the Paul Scherrer Institut, Switzerland. CAMEA is optimized for efficient data acquisition of scattered neutrons in the horizontal scattering plane, allowing for detailed and rapid mapping of low-energy excitations under extreme sample environment conditions.

7.
J Phys Condens Matter ; 35(24)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36944255

RESUMEN

We address the degeneracy of the ground state multiplet on the 5d1Re6+ion in double perovskite Ba2MgReO6using a combination of specific heat measurements and density functional calculations. For Ba2MgReO6, two different ground state multiplets have previously been proposed-a quartet (with degeneracyN= 4) (Hirai and Hiroi 2019J. Phys. Soc. Japan88064712) and a doublet (N= 2) (Marjerrisonet al2016Inorg. Chem.5510701). Here we employ two independent methods for the estimation of phonon contribution in heat capacity data to obtain the magnetic entropySmag, which reflects the degeneracy of the ground state multipletNthroughSmag=RlnN. In both cases, we obtain that in the temperature range covering 2 to 120 K the released entropy is better described bySmag=Rln2. The detailed nature of the ground state multiplet in Ba2MgReO6remains an open question.

8.
Commun Phys ; 6(1): 138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665396

RESUMEN

Studying multi-particle elementary excitations has provided unique access to understand collective many-body phenomena in correlated electronic materials, paving the way towards constructing microscopic models. In this work, we perform O K-edge resonant inelastic X-ray scattering (RIXS) on the quasi-one-dimensional cuprate Sr14Cu24O41 with weakly-doped spin ladders. The RIXS signal is dominated by a dispersing sharp mode ~ 270 meV on top of a damped incoherent component ~ 400-500 meV. Comparing with model calculations using the perturbative continuous unitary transformations method, the two components resemble the spin-conserving ΔS = 0 two-triplon bound state and continuum excitations in the spin ladders. Such multi-spin response with long-lived ΔS = 0 excitons is central to several exotic magnetic properties featuring Majorana fermions, yet remains unexplored given the generally weak cross-section with other experimental techniques. By investigating a simple spin-ladder model system, our study provides valuable insight into low-dimensional quantum magnetism.

9.
Nanoscale ; 14(44): 16655-16660, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36330779

RESUMEN

Skyrmions are chiral magnetic textures with non-trivial topology, and due to their unique properties they are widely considered as promising information carriers in novel magnetic storage applications. While electric field writing/erasing and manipulation of skyrmions have been recently achieved, quantitative insights into the energetics of those phenomena remain scarce. Here, we report our in situ electric field writing/erasing of skyrmions in magnetoelectric helimagnet Cu2OSeO3 utilizing real-space and real-time Lorentz transmission electron macroscopy. Through the quantitavie analysis on our massive video data, we obtained a linear dependence of the number of skyrmions on the amplitude of the applied electric field, from which a local energy barried to write/erase skyrmions is estimated to be per skyrmion. Such an ultralow energy barrier implies the potential of precise control of skyrmions in future spintronics applications.

10.
Nanoscale Res Lett ; 17(1): 20, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089439

RESUMEN

We present a method to directly visualise a statistical analysis of skyrmion defect alignment at grain boundaries in the skyrmion host [Formula: see text]OSeO3. Using Lorentz transmission electron microscopy, we collected large data sets with several hundreds of frames containing skyrmion lattices with grain boundaries in them. To address the behaviour of strings of dislocations in these grain boundaries, we developed an algorithm to automatically extract and classify strings of dislocations separating the grains. This way we circumvent the problem of having to create configurations with well-defined relative grain orientations by performing a statistical analysis on a dynamically rearranging image sequence. With this statistical method, we are able to experimentally extract the relationship between grain boundary alignment and defect spacing and find an agreement with geometric expectations. The algorithms used can be extended to other types of lattices such as Abrikosov lattices or colloidal systems in optical microscopy.

11.
Phys Rev Lett ; 127(15): 157204, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34677991

RESUMEN

Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K_{2}Ni_{2}(SO_{4})_{3} forming a three-dimensional network of Ni^{2+} spins. Using density functional theory calculations, we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering, and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field B≳4 T diminishes the ordered component and drives the system into a pure quantum spin liquid state. This shows that a system of interconnected S=1 trillium lattices exhibits a significantly elevated level of geometrical frustration.

13.
ACS Mater Au ; 1(1): 55-61, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36855616

RESUMEN

The upper critical field is a fundamental measure of the strength of superconductivity in a material. It is also a cornerstone for the realization of superconducting magnet applications. The critical field arises because of the Cooper pair breaking at a limiting field, which is due to the Pauli paramagnetism of the electrons. The maximal possible magnetic field strength for this effect is commonly known as the Pauli paramagnetic limit given as µ0 H Pauli ≈ 1.86[T/K]·T c for a weak-coupling Bardeen-Schrieffer-Cooper (BCS) superconductor. The violation of this limit is only rarely observed. Exceptions include some low-temperature heavy Fermion and some strongly anisotropic superconductors. Here, we report on the superconductivity at 9.75 K in the centrosymmetric, cubic η-carbide-type compound Nb4Rh2C1-δ, with a normalized specific heat jump of ΔC/γT c = 1.64. We find that this material has a remarkably high upper critical field of µ0 H c2(0) = 28.5 T, which is exceeding by far its weak-coupling BCS Pauli paramagnetic limit of µ0 H Pauli = 18.1 T. Determination of the origin and consequences of this effect will represent a significant new direction in the study of critical fields in superconductors.

14.
Nat Nanotechnol ; 15(10): 892, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32901151

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nat Nanotechnol ; 15(9): 761-767, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32541944

RESUMEN

The phase transition most commonly observed is probably melting, a transition from ordered crystalline solids to disordered isotropic liquids. In three dimensions, melting is a single, first-order phase transition. In two-dimensional systems, however, theory predicts a general scenario of two continuous phase transitions separated by an intermediate, oriented liquid state, the so-called hexatic phase with short-range translational and quasi-long-range orientational orders. Such hexatic phases occur in colloidal systems, Wigner solids and liquid crystals, all composed of real-matter particles. In contrast, skyrmions are countable soliton configurations with non-trivial topology and these quasi-particles can form two-dimensional lattices. Here we show, by direct imaging with cryo-Lorentz transmission electron microscopy, that magnetic field variations can tune the phase of the skyrmion ensembles in Cu2OSeO3 from a two-dimensional solid through the long-speculated skyrmion hexatic phase to a liquid. The local spin order persists throughout the process. Remarkably, our quantitative analysis demonstrates that the aforementioned topological-defect-induced crystal melting scenario well describes the observed phase transitions.

16.
J Phys Condens Matter ; 31(48): 485705, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31412326

RESUMEN

In the Ca1-x La x FeAs2 (1 1 2) family of pnictide superconductors, we have investigated a highly overdoped composition (x = 0.56), prepared by a high-pressure, high-temperature synthesis. Magnetic measurements show an antiferromagnetic transition at T N = 120 K, well above the one at lower doping (0.15 < x < 0.27). Below the onset of long-range magnetic order at T N, the electrical resistivity is strongly reduced and is dominated by electron-electron interactions, as evident from its temperature dependence. The Seebeck coefficient shows a clear metallic behavior as in narrow band conductors. The temperature dependence of the Hall coefficient and the violation of Kohler's rule agree with the multiband character of the material. No superconductivity was observed down to 1.8 K. The success of the high-pressure synthesis encourages further investigations of the so far only partially explored phase diagram in this family of Iron-based high temperature superconductors.

17.
Sci Adv ; 4(9): eaar7043, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30225364

RESUMEN

Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with the Dzyaloshinskii-Moriya interaction. Recently, ß-Mn structure-type Co-Zn-Mn alloys were identified as a new class of chiral magnet to host such skyrmion crystal phases, while ß-Mn itself is known as hosting an elemental geometrically frustrated spin liquid. We report the intermediate composition system Co7Zn7Mn6 to be a unique host of two disconnected, thermal-equilibrium topological skyrmion phases; one is a conventional skyrmion crystal phase stabilized by thermal fluctuations and restricted to exist just below the magnetic transition temperature Tc, and the other is a novel three-dimensionally disordered skyrmion phase that is stable well below Tc. The stability of this new disordered skyrmion phase is due to a cooperative interplay between the chiral magnetism with the Dzyaloshinskii-Moriya interaction and the frustrated magnetism inherent to ß-Mn.

18.
Nano Lett ; 18(8): 5167-5171, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30040904

RESUMEN

Exploiting additional degrees of freedom in solid-state materials may be the most-promising solution when approaching the quantum limit of Moore's law for the conventional electronic industry. Recently discovered topologically nontrivial spin textures, skyrmions, are outstanding among such possibilities. However, the controlled creation of skyrmions, especially by electric means, remains a pivotal challenge in technological applications. Here, we report that skyrmions can be created locally via electric field in the magnetoelectric helimagnet Cu2OSeO3. Using Lorentz transmission electron microscopy, we successfully write skyrmions in situ from a helical-spin background. Our discovery is highly coveted because it implies that skyrmionics can be integrated into modern field effect transistor based electronic technology, in which very low energy dissipation can be achieved and, hence, realize a large step forward toward its practical applications.

19.
Nat Commun ; 9(1): 1292, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599433

RESUMEN

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

20.
Rev Sci Instrum ; 89(1): 015105, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29390677

RESUMEN

The continuous angle multiple energy analysis concept is a backend for both time-of-flight and analyzer-based neutron spectrometers optimized for neutron spectroscopy with highly efficient mapping in the horizontal scattering plane. The design employs a series of several upward scattering analyzer arcs placed behind each other, which are set to different final energies allowing a wide angular coverage with multiple energies recorded simultaneously. For validation of the concept and the model calculations, a prototype was installed at the Swiss neutron source SINQ, Paul Scherrer Institut. The design of the prototype, alignment and calibration procedures, experimental results of background measurements, and proof-of-concept inelastic measurements on LiHoF4 and h-YMnO3 are presented here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...