Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4124-4136, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554107

RESUMEN

Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.


Asunto(s)
Diseño de Fármacos , Sitios de Empalme de ARN , Empalme del ARN , Humanos , Compuestos Azo , Modelos Moleculares , Conformación de Ácido Nucleico , Pirimidinas , Empalme del ARN/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
2.
J Am Chem Soc ; 145(50): 27601-27615, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38062770

RESUMEN

The biological activities and pharmacological properties of peptides and peptide mimetics are determined by their conformational states. Therefore, a detailed understanding of the conformational landscape is crucial for rational drug design. Nuclear magnetic resonance (NMR) is the only method for structure determination in solution. However, it remains challenging to determine the structures of peptides using NMR because of very weak nuclear Overhauser effects (NOEs), the semiquantitative nature of the rotating frame Overhauser effect (ROE), and the low number of NOEs/ROEs in N-methylated peptides. In this study, we introduce a new approach to investigating the structures of modified macrocyclic peptides. We utilize exact NOEs (eNOEs) in viscous solvent mixtures to replicate various cellular environments. eNOEs provide detailed structural information for highly dynamic modified peptides. Structures of high precision were obtained for cyclosporin A, with a backbone atom rmsd of 0.10 Å. Distinct conformational states in different environments were identified for omphalotin A (OmphA), a fungal nematotoxic and multiple backbone N-methylated macrocyclic peptides. A model for cell-permeation is presented for OmphA, based on its structures in polar, apolar, and mixed polarity solvents. During the transition from a polar to an apolar environment, OmphA undergoes a rearrangement of its H-bonding network, accompanied by a cis to trans isomerization of the ω torsion angle within a type VIa ß-turn. We hypothesize that the kinetics of these conformational transitions play a crucial role in determining the membrane-permeation capabilities of OmphA.


Asunto(s)
Imagen por Resonancia Magnética , Péptidos , Conformación Proteica , Péptidos/química , Espectroscopía de Resonancia Magnética , Ciclosporina , Solventes
3.
Angew Chem Int Ed Engl ; 62(34): e202304481, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37216334

RESUMEN

Modular trans-acyltransferase polyketide synthases (trans-AT PKSs) are enzymatic assembly lines that biosynthesize complex polyketide natural products. Relative to their better studied cis-AT counterparts, the trans-AT PKSs introduce remarkable chemical diversity into their polyketide products. A notable example is the lobatamide A PKS, which incorporates a methylated oxime. Here we demonstrate biochemically that this functionality is installed on-line by an unusual oxygenase-containing bimodule. Furthermore, analysis of the oxygenase crystal structure coupled with site-directed mutagenesis allows us to propose a model for catalysis, as well as identifying key protein-protein interactions that support this chemistry. Overall, our work adds oxime-forming machinery to the biomolecular toolbox available for trans-AT PKS engineering, opening the way to introducing such masked aldehyde functionalities into diverse polyketides.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Catálisis
4.
Nucleic Acids Res ; 51(9): 4555-4571, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36928389

RESUMEN

The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Desarrollo de Medicamentos , SARS-CoV-2 , Humanos , COVID-19/virología , ARN Viral/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside de Coronavirus/antagonistas & inhibidores , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masas , Flujo de Trabajo , Unión Proteica
5.
J Biomol NMR ; 74(10-11): 579-594, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32556806

RESUMEN

Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.


Asunto(s)
Descubrimiento de Drogas/métodos , Flúor/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Anisotropía , Teoría Funcional de la Densidad , Diseño de Fármacos , Ligandos , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...