Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040332

RESUMEN

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Asunto(s)
Pandemias , Triticum , Triticum/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Genómica , Hongos
2.
Plants (Basel) ; 11(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015411

RESUMEN

Wheat blast caused by the Magnaporthe oryzaeTriticum (MoT) pathotype is one of the most damaging fungal diseases of wheat. During the screening of novel bioactive secondary metabolites, we observed two marine secondary metabolites, bonactin and feigrisolide C, extracted from the marine bacteria Streptomyces spp. (Act 8970 and ACT 7619), remarkably inhibited the hyphal growth of an MoT isolate BTJP 4 (5) in vitro. In a further study, we found that bonactin and feigrisolide C reduced the mycelial growth of this highly pathogenic isolate in a dose-dependent manner. Bonactin inhibited the mycelial development of BTJP 4 (5) more effectively than feigrisolide C, with minimal concentrations for inhibition being 0.005 and 0.025 µg/disk, respectively. In a potato dextrose agar (PDA) medium, these marine natural products greatly reduced conidia production in the mycelia. Further bioassays demonstrated that these secondary metabolites could inhibit the MoT conidia germination, triggered lysis, or conidia germinated with abnormally long branched germ tubes that formed atypical appressoria (low melanization) of BTJP 4 (5). Application of these natural products in a field experiment significantly protected wheat from blast disease and increased grain yield compared to the untreated control. As far as we are aware, this is the first report of bonactin and feigrisolide C that inhibited mycelial development, conidia production, conidial germination, and morphological modifications in the germinated conidia of an MoT isolate and suppressed wheat blast disease in vivo. To recommend these compounds as lead compounds or biopesticides for managing wheat blast, more research is needed with additional MoT isolates to identify their exact mode of action and efficacy of disease control in diverse field conditions.

3.
Microorganisms ; 10(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744705

RESUMEN

Protein kinases (PKs), being key regulatory enzymes of a wide range of signaling pathways, are potential targets for antifungal agents. Wheat blast disease, caused by Magnaporthe oryzae Triticum (MoT), is an existential threat to world food security. During the screening process of natural metabolites against MoT fungus, we find that two protein kinase inhibitors, staurosporine and chelerythrine chloride, remarkably inhibit MoT hyphal growth. This study further investigates the effects of staurosporine and chelerythrine chloride on MoT hyphal growth, conidia production, and development as well as wheat blast inhibition in comparison to a commercial fungicide, Nativo®75WG. The growth of MoT mycelia is significantly inhibited by these compounds in a dose-dependent manner. These natural compounds greatly reduce conidia production in MoT mycelia along with suppression of conidial germination and triggered lysis, resulting in deformed germ tubes and appressoria. These metabolites greatly suppress blast development in artificially inoculated wheat plants in the field. This is the first report of the antagonistic effect of these two natural PKC inhibitory alkaloids on MoT fungal developmental processes in vitro and suppression of wheat blast disease on both leaves and spikes in vivo. Further research is needed to identify their precise mechanism of action to consider them as biopesticides or lead compounds for controlling wheat blast.

4.
PLoS One ; 15(8): e0233665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804955

RESUMEN

Oligomycins are macrolide antibiotics, produced by Streptomyces spp. that show antagonistic effects against several microorganisms such as bacteria, fungi, nematodes and the oomycete Plasmopara viticola. Conidiogenesis, germination of conidia and formation of appressoria are determining factors pertaining to pathogenicity and successful diseases cycles of filamentous fungal phytopathogens. The goal of this research was to evaluate the in vitro suppressive effects of two oligomycins, oligomycin B and F along with a commercial fungicide Nativo® 75WG on hyphal growth, conidiogenesis, conidial germination, and appressorial formation of the wheat blast fungus, Magnaporthe oryzae Triticum (MoT) pathotype. We also determined the efficacy of these two oligomycins and the fungicide product in vivo in suppressing wheat blast with a detached leaf assay. Both oligomycins suppressed the growth of MoT mycelium in a dose dependent manner. Between the two natural products, oligomycin F provided higher inhibition of MoT hyphal growth compared to oligomycin B with a minimum inhibitory concentration of 0.005 and 0.05 µg/disk, respectively. The application of the compounds completely halted conidial formation of the MoT mycelium in agar medium. Further bioassays showed that these compounds significantly inhibited MoT conidia germination and induced lysis. The compounds also caused abnormal germ tube formation and suppressed appressorial formation of germinated spores. Interestingly, the application of these macrolides significantly inhibited wheat blast on detached leaves of wheat. This is the first report on the inhibition of mycelial growth, conidiogenesis, germination of conidia, deleterious morphological changes in germinated conidia, and suppression of blast disease of wheat by oligomycins from Streptomyces spp. Further study is needed to unravel the precise mode of action of these natural compounds and consider them as biopesticides for controlling wheat blast.


Asunto(s)
Magnaporthe/efectos de los fármacos , Magnaporthe/patogenicidad , Oligomicinas/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Triticum/microbiología , Agentes de Control Biológico/farmacología , Grano Comestible/microbiología , Microbiología de Alimentos , Fungicidas Industriales/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Magnaporthe/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...