Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961472

RESUMEN

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , ARN/metabolismo
2.
Adv Mater Technol ; 8(16)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283881

RESUMEN

Microfluidic devices have been used for decades to isolate cells, viruses, and proteins using on-chip immunoaffinity capture using biotinylated antibodies, proteins, or aptamers. To accomplish this, the inner surface is modified to present binding moieties for the desired analyte. While this approach has been successful in research settings, it is challenging to scale many surface modification strategies. Traditional polydimethylsiloxane (PDMS) devices can be effectively functionalized using silane-based methods; however, it requires high labor hours, cleanroom equipment, and hazardous chemicals. Manufacture of microfluidic devices using plastics, including cyclic olefin copolymer (COC), allows chips to be mass produced, but most functionalization methods used with PDMS are not compatible with plastic. Here we demonstrate how to deposit biotin onto the surface of a plastic microfluidic chips using aryl-diazonium. This method chemically bonds biotin to the surface, allowing for the addition of streptavidin nanoparticles to the surface. Nanoparticles increase the surface area of the chip and allow for proper capture moiety orientation. Our process is faster, can be performed outside of a fume hood, is very cost-effective using readily available laboratory equipment, and demonstrates higher rates of capture. Additionally, our method allows for more rapid and scalable production of devices, including for diagnostic testing.

4.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35708912

RESUMEN

Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.


Asunto(s)
Neoplasias Ováricas , Satélite de ARN , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/genética , Fenotipo , ARN , Microambiente Tumoral/genética
6.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298673

RESUMEN

PURPOSE: To understand how tumor cells alter macrophage biology once they are recruited to triple-negative breast cancer (TNBC) tumors by CCL5. METHOD: Mouse bone marrow derived macrophage (BMDMs) were isolated and treated with recombinant CCL5 protein alone, with tumor cell conditioned media, or with tumor extracellular vesicles (EVs). Media from these tumor EV-educated macrophages (TEMs) was then used to determine how these macrophages affect TNBC invasion. To understand the mechanism, we assayed the cytokine secretion from these macrophages to determine how they impact tumor cell invasion. Tumor CCL5 expression was varied in tumors to determine its role in regulating macrophage biology through EVs. RESULTS: Tumor EVs are a necessary component for programming naïve macrophages toward a pro-metastatic phenotype. CCL5 expression in the tumor cells regulates both EV biogenesis/secretion/cargo and macrophage EV-education toward a pro-metastatic phenotype. Analysis of the tumor EV-educated macrophages (TEMs) showed secretion of a variety of factors including CXCL1, CTLA-4, IFNG, OPN, HGF, TGFB, and CCL19 capable of remodeling the surrounding tumor stroma and immune infiltrate. Injection of tumor cells with macrophages educated by metastatic tumor cell EVs into mice increased tumor metastasis to the lung. CONCLUSION: These results demonstrate that tumor-derived EVs are key mediators of macrophage education and likely play a more complex role in modulating tumor therapeutic response by regulating the tumor immune infiltrate.

7.
PLoS One ; 16(5): e0251290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983964

RESUMEN

Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.


Asunto(s)
Vesículas Extracelulares/metabolismo , ARN/aislamiento & purificación , Manejo de Especímenes/métodos , Criopreservación/métodos , Medios de Cultivo/química , Voluntarios Sanos , Humanos , Plasma/química , ARN/metabolismo , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/fisiología
8.
Proc Natl Acad Sci U S A ; 117(29): 16839-16847, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32641515

RESUMEN

Circulating tumor cell (CTC)-based liquid biopsies provide unique opportunities for cancer diagnostics, treatment selection, and response monitoring, but even with advanced microfluidic technologies for rare cell detection the very low number of CTCs in standard 10-mL peripheral blood samples limits their clinical utility. Clinical leukapheresis can concentrate mononuclear cells from almost the entire blood volume, but such large numbers and concentrations of cells are incompatible with current rare cell enrichment technologies. Here, we describe an ultrahigh-throughput microfluidic chip, LPCTC-iChip, that rapidly sorts through an entire leukapheresis product of over 6 billion nucleated cells, increasing CTC isolation capacity by two orders of magnitude (86% recovery with 105 enrichment). Using soft iron-filled channels to act as magnetic microlenses, we intensify the field gradient within sorting channels. Increasing magnetic fields applied to inertially focused streams of cells effectively deplete massive numbers of magnetically labeled leukocytes within microfluidic channels. The negative depletion of antibody-tagged leukocytes enables isolation of potentially viable CTCs without bias for expression of specific tumor epitopes, making this platform applicable to all solid tumors. Thus, the initial enrichment by routine leukapheresis of mononuclear cells from very large blood volumes, followed by rapid flow, high-gradient magnetic sorting of untagged CTCs, provides a technology for noninvasive isolation of cancer cells in sufficient numbers for multiple clinical and experimental applications.


Asunto(s)
Separación Celular/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/clasificación , Línea Celular Tumoral , Separación Celular/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Leucaféresis/métodos , Campos Magnéticos , Microfluídica/instrumentación
9.
Nature ; 568(7751): 254-258, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30842661

RESUMEN

Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin5,6, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours7. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Hemina/uso terapéutico , Metformina/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ciclo del Ácido Cítrico/fisiología , Transporte de Electrón/genética , Femenino , Glucosa/metabolismo , Hemina/metabolismo , Xenoinjertos , Humanos , Metformina/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/genética , Proteolisis , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
PLoS One ; 11(6): e0157130, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27300295

RESUMEN

OBJECTIVE: To measure Met protein content in prostate biopsies guided by fused magnetic resonance and ultrasound imaging, and to measure soluble Met (sMet) protein concentration in plasma samples from patients presenting evidence of prostate cancer. PATIENTS AND METHODS: 345 patients had plasma samples drawn prior to image-guided biopsy of the prostate. Of these, 32% had benign biopsies. Of the 236 that were positive for prostate adenocarcinoma (PCa), 132 treated by total prostatectomy had Gleason scores of 6 (17%), 7, (55%), 8 (16%), or 9-10 (12%). 23% had evidence of local invasion. Plasma samples were also obtained from 80 healthy volunteers. Tissue Met and plasma sMet were measured by two-site immunoassay; values were compared among clinically defined groups using non-parametric statistical tests to determine significant differences or correlations. RESULTS: PCa tumor Met correlated significantly with plasma sMet, but median values were similar among benign and malignant groups. Median plasma sMet values were also similar among those groups, although both medians were significantly above normal. Median Met content in primary PCa tumors and sMet concentrations were independent of Gleason score, final pathologic stage and age. CONCLUSION: Plasma sMet is not predictive of PCa or its severity in patients with organ-confined or locally invasive disease. Quantitative analysis of Met protein content and activation state in PCa tumor biopsy samples was highly feasible and may have value in follow-up to genomic and/or transcriptomic-based screens that show evidence of oncogenically relevant MET gene features that occur at relatively low frequency in non-metastatic PCa.


Asunto(s)
Próstata/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-met/análisis , Proteínas Proto-Oncogénicas c-met/sangre , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Biopsia Guiada por Imagen , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias de la Próstata/diagnóstico
12.
Clin Exp Metastasis ; 32(7): 659-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26231668

RESUMEN

Signaling by human hepatocyte growth factor (hHGF) via its cell surface receptor (MET) drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Oncogenic pathway activation also contributes to tumorigenesis and cancer progression, including tumor angiogenesis and metastasis, in several prevalent malignancies. The HGF gene encodes full-length hHGF and two truncated isoforms known as NK1 and NK2. NK1 induces all three HGF activities at modestly reduced potency, whereas NK2 stimulates only motogenesis and enhances HGF-driven tumor metastasis in transgenic mice. Prior studies have shown that mouse HGF (mHGF) also binds with high affinity to human MET. Here we show that, like NK2, mHGF stimulates cell motility, invasion and spontaneous metastasis of PC3M human prostate adenocarcinoma cells in mice through human MET. To identify target genes and signaling pathways associated with motogenic and metastatic HGF signaling, i.e., the HGF invasive program, gene expression profiling was performed using PC3M cells treated with hHGF, NK2 or mHGF. Results obtained using Ingenuity Pathway Analysis software showed significant overlap with networks and pathways involved in cell movement and metastasis. Interrogating The Cancer Genome Atlas project also identified a subset of 23 gene expression changes in PC3M with a strong tendency for co-occurrence in prostate cancer patients that were associated with significantly decreased disease-free survival.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Invasividad Neoplásica/patología , Neoplasias de la Próstata/patología , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Xenoinjertos , Humanos , Masculino , Ratones , Invasividad Neoplásica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
13.
PLoS One ; 8(3): e54014, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516391

RESUMEN

PURPOSE: The receptors for hepatocyte and vascular endothelial cell growth factors (MET and VEGFR2, respectively) are critical oncogenic mediators in gastric adenocarcinoma. The purpose is to examine the safety and efficacy of foretinib, an oral multikinase inhibitor targeting MET, RON, AXL, TIE-2, and VEGFR2 receptors, for the treatment of metastatic gastric adenocarcinoma. PATIENTS AND METHODS: Foretinib safety and tolerability, and objective response rate (ORR) were evaluated in patients using intermittent (240 mg/day, for 5 days every 2 weeks) or daily (80 mg/day) dosing schedules. Thirty evaluable patients were required to achieve alpha = 0.10 and beta = 0.2 to test the alternative hypothesis that single-agent foretinib would result in an ORR of ≥ 25%. Up to 10 additional patients could be enrolled to ensure at least eight with MET amplification. Correlative studies included tumor MET amplification, MET signaling, pharmacokinetics and plasma biomarkers of foretinib activity. RESULTS: From March 2007 until October 2009, 74 patients were enrolled; 74% male; median age, 61 years (range, 25-88); 93% had received prior therapy. Best response was stable disease (SD) in 10 (23%) patients receiving intermittent dosing and five (20%) receiving daily dosing; SD duration was 1.9-7.2 months (median 3.2 months). Of 67 patients with tumor samples, 3 had MET amplification, one of whom had SD. Treatment-related adverse events occurred in 91% of patients. Rates of hypertension (35% vs. 15%) and elevated aspartate aminotransferase (23% vs. 8%) were higher with intermittent dosing. In both patients with high baseline tumor phospho-MET (pMET), the pMET:total MET protein ratio decreased with foretinib treatment. CONCLUSION: These results indicate that few gastric carcinomas are driven solely by MET and VEGFR2, and underscore the diverse molecular oncogenesis of this disease. Despite evidence of MET inhibition by foretinib, single-agent foretinib lacked efficacy in unselected patients with metastatic gastric cancer.


Asunto(s)
Anilidas/uso terapéutico , Antineoplásicos/uso terapéutico , Quinolinas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Anilidas/farmacología , Animales , Antineoplásicos/farmacología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Quinolinas/farmacología , Resultado del Tratamiento , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Cell ; 22(2): 250-62, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22897854

RESUMEN

Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) regulate normal development and homeostasis and drive disease progression in many forms of cancer. Both proteins signal by binding to receptor tyrosine kinases and heparan sulfate (HS) proteoglycans on target cell surfaces. Basic residues comprising the primary HS binding sites on HGF and VEGF provide similar surface charge distributions without underlying structural similarity. Combining three acidic amino acid substitutions in these sites in the HGF isoform NK1 or the VEGF isoform VEGF165 transformed each into potent, selective competitive antagonists of their respective normal and oncogenic signaling pathways. Our findings illustrate the importance of HS in growth factor driven cancer progression and reveal an efficient strategy for therapeutic antagonist development.


Asunto(s)
Marcación de Gen , Heparitina Sulfato/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos CD34/metabolismo , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Perros , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Unión Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología
15.
Bioorg Med Chem Lett ; 21(7): 2113-5, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21353547

RESUMEN

Kidney cancer was the cause of almost 13,000 deaths in the United States in 2009. Loss of function of the VHL tumor suppressor gene (von Hippel-Lindau disease) dramatically increases the risk of developing clear cell kidney cancer. The VHL protein is best understood for its regulation of hypoxia inducible factor (HIF). HIF responds to changes in oxygen levels in the cell and is responsible for mediating the transcriptional response to hypoxia. Of the three known HIFα gene products, HIF-2α appears to play a fundamental role in renal carcinoma. A high throughput screen was developed to identify small molecule inhibitors of HIF-2 gene expression. The screen was performed and yielded 153 confirmed active natural product extracts. Three of the active extracts were from marine soft corals of the order Alcyonacea: Sarcophyton sp., Lobophytum sarcophytoides and Asterospicularia laurae. Bioassay-guided fractionation led to the isolation of two new cembrane diterpenes, (4Z,8S*,9R*,12E,14E)-9-hydroxy-1-(prop-1-en-2-yl)-8,12-dimethyl-oxabicyclo[9.3.2]-hexadeca-4,12,14-trien-18-one (1), and (1E,3E,7R*,8R*,11E)-1-(2-methoxypropan-2-yl)-4,8,12-trimethyloxabicyclo[12.1.0]-pentadeca-1,3,11-triene (7), as well as eight known compounds, 2-6 and 8-10.


Asunto(s)
Antozoos/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Diterpenos/análisis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
16.
Curr Signal Transduct Ther ; 6(2): 146-151, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25197268

RESUMEN

Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programs. Pathway inhibitors can be divided broadly into biologicals and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other inhibitor types. We review here Met structure and function, the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development, as well as the latest clinical trial results. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.

17.
Eur J Cancer ; 46(7): 1260-70, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20303741

RESUMEN

Under normal conditions, hepatocyte growth factor (HGF)-induced Met tyrosine kinase (TK) activation is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalisation and degradation. Despite these controls, HGF/Met signalling contributes to oncogenesis and tumour progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumour metastasis. The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programmes. Pathway inhibitors can be divided broadly into biologicals and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other inhibitor types. We review here the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development as well as the latest clinical trial results. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signalling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.


Asunto(s)
Antineoplásicos/farmacología , Factor de Crecimiento de Hepatocito/fisiología , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-met/fisiología , Receptores de Factores de Crecimiento/fisiología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Receptores de Factores de Crecimiento/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA