Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicon ; 233: 107228, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479190

RESUMEN

Cancer is a global public health issue. Neuroblastoma (NB) originates from any tissue of the sympathetic nervous system, and the most affected site is the abdomen. The adrenal gland is the primary site in 38% of cases. Approximately 50% of patients have metastatic disease at diagnosis, and bone marrow is often affected. Metastatic disease is characterized by the spreading of cancer cells that are frequently resistant to chemotherapy and radiotherapy from the primary tumor to other specific parts of the body and is responsible for 90% of cancer-related deaths. Increasing evidence has indicated that nitric oxide (NO) signaling is implicated in the pathophysiology of many types of cancer, particularly in tumorigenesis and cancer progression. However, the effect of NO on metastasis cannot be easily classified as prometastatic or antimetastatic. An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease. Here, the proline-rich decapeptide isolated from Bothrops jararaca venom (Bj-PRO-10c) that enhances and sustains the generation of NO was used to unravel the role of metabolic NO in steps of metastasis. Bj-PRO-10c showed an antimetastatic effect, mainly by interfering with actin cytoskeleton rearrangement, controlling cell proliferation, and decreasing the seeding efficiency of NB in metastatic niches. Therefore, we proposed that an approach for controlled NO induction with the right molecular strategies can hopefully inhibit metastasis and increase the lifespan of NB patients.


Asunto(s)
Venenos de Crotálidos , Neuroblastoma , Humanos , Argininosuccinato Sintasa/metabolismo , Óxido Nítrico/metabolismo , Venenos de Crotálidos/farmacología , Neuroblastoma/tratamiento farmacológico
2.
Front Immunol ; 14: 1141731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359536

RESUMEN

Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ácidos Grasos Omega-3 , Animales , Ratones , Ácido Eicosapentaenoico/farmacología , Interleucina-10/farmacología , PPAR gamma , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cicatrización de Heridas , Colágeno/metabolismo , Suplementos Dietéticos
3.
Cells ; 10(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34359950

RESUMEN

The heterogeneity of tumor cell mass and the plasticity of cancer cell phenotypes in solid tumors allow for the insurgence of resistant and metastatic cells, responsible for cancer patients' clinical management's main challenges. Among several factors that are responsible for increased cancer aggression, metabolic reprogramming is recently emerging as an ultimate cancer hallmark, as it is central for cancer cell survival and self-renewal, metastasis and chemoresistance. The P2X7 receptor, whose expression is upregulated in many solid and hematological malignancies, is also emerging as a good candidate in cancer metabolic reprogramming and the regulation of stem cell proliferation and differentiation. Metabostemness refers to the metabolic reprogramming of cancer cells toward less differentiated (CSCs) cellular states, and we believe that there is a strong correlation between metabostemness and P2X7 receptor functions in oncogenic processes. Here, we summarize important aspects of P2X7 receptor functions in normal and tumor tissues as well as essential aspects of its structure, regulation, pharmacology and its clinical use. Finally, we review current knowledge implicating P2X7 receptor functions in cancer-related molecular pathways, in metabolic reprogramming and in metabostemness.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Oncogenes/fisiología , Receptores Purinérgicos P2X7/metabolismo , Diferenciación Celular/fisiología , Humanos , Células Madre Neoplásicas/patología
4.
Cytometry A ; 97(11): 1109-1126, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32633884

RESUMEN

Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Microambiente Tumoral , Macrófagos Asociados a Tumores , Adenosina Trifosfato , Humanos , Macrófagos , Transducción de Señal
5.
Stem Cell Rev Rep ; 16(2): 288-300, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31813120

RESUMEN

Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores Purinérgicos P2X7/metabolismo , Animales , Transición Epitelial-Mesenquimal , Humanos , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...