Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 8(7): 975-982, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35912352

RESUMEN

Molecular materials must deliver high current densities to be competitive with traditional heterogeneous catalysts. Despite their high density of active sites, it has been unclear why the reported O2 reduction reaction (ORR) activity of molecularly defined conductive metal-organic frameworks (MOFs) have been very low: ca. -1 mA cm-2. Here, we use a combination of gas diffusion electrolyses and nanoelectrochemical measurements to lift multiscale O2 transport limitations and show that the intrinsic electrocatalytic ORR activity of a model 2D conductive MOF, Ni3(HITP)2, has been underestimated by at least 3 orders of magnitude. When it is supported on a gas diffusion electrode (GDE), Ni3(HITP)2 can deliver ORR activities >-150 mA cm-2 and gravimetric H2O2 electrosynthesis rates exceeding or on par with those of prior heterogeneous electrocatalysts. Enforcing the fastest accessible mass transport rates using scanning electrochemical cell microscopy revealed that Ni3(HITP)2 is capable of ORR current densities exceeding -1200 mA cm-2 and at least another 130-fold higher ORR mass activity than has been observed in GDEs. Our results directly implicate precise control over multiscale mass transport to achieve high-current-density electrocatalysis in molecular materials.

2.
Nat Mater ; 20(7): 1000-1006, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33737727

RESUMEN

Understanding how the bulk structure of a material affects catalysis on its surface is critical to the development of actionable catalyst design principles. Bulk defects have been shown to affect electrocatalytic materials that are important for energy conversion systems, but the structural origins of these effects have not been fully elucidated. Here we use a combination of high-resolution scanning electrochemical cell microscopy and electron backscatter diffraction to visualize the potential-dependent electrocatalytic carbon dioxide [Formula: see text] electroreduction and hydrogen [Formula: see text] evolution activity on Au electrodes and probe the effects of bulk defects. Comparing colocated activity maps and videos to the underlying microstructure and lattice deformation supports a model in which CO2 electroreduction is selectively enhanced by surface-terminating dislocations, which can accumulate at grain boundaries and slip bands. Our results suggest that the deliberate introduction of dislocations into materials is a promising strategy for improving catalytic properties.

4.
Chem Commun (Camb) ; 54(12): 1417-1420, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29297911

RESUMEN

We demonstrate a platform to screen a virus pseudotyped with Ebola virus glycoprotein (GP) against a library of peptides that contain non-natural amino acids to develop GP affinity ligands. This system could be used for rapid development of peptide-based antivirals for other emerging or neglected tropical infectious diseases.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Descubrimiento de Drogas/métodos , Ebolavirus/metabolismo , Péptidos/metabolismo , Análisis por Matrices de Proteínas , Proteínas del Envoltorio Viral/metabolismo , Antivirales/análisis , Antivirales/metabolismo , Ligandos , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...