Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Pediatr Neurol ; 155: 8-17, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569228

RESUMEN

BACKGROUND: TRAF7-related cardiac, facial, and digital anomalies with developmental delay (CAFDADD), a multisystemic neurodevelopmental disorder caused by germline missense variants in the TRAF7 gene, exhibits heterogeneous clinical presentations. METHODS: We present a detailed description of 11 new TRAF7-related CAFDADD cases, featuring eight distinct variants, including a novel one. RESULTS: Phenotypic analysis and a comprehensive review of the 58 previously reported cases outline consistent clinical presentations, emphasizing dysmorphic features, developmental delay, endocrine manifestations, and cardiac defects. In this enlarged collection, novelties include a wider range of cognitive dysfunction, with some individuals exhibiting normal development despite early psychomotor delay. Communication challenges, particularly in expressive language, are prevalent, necessitating alternative communication methods. Autistic traits, notably rigidity, are observed in the cohort. Also, worth highlighting are hearing loss, sleep disturbances, and endocrine anomalies, including growth deficiency. Cardiac defects, frequently severe, pose early-life complications. Facial features, including arched eyebrows, contribute to the distinct gestalt. A novel missense variant, p.(Arg653Leu), further underscores the complex relationship between germline TRAF7 variants and somatic changes linked to meningiomas. CONCLUSIONS: Our comprehensive analysis expands the phenotypic spectrum, emphasizing the need for oncological evaluations and proposing an evidence-based schedule for clinical management. This study contributes to a better understanding of TRAF7-related CAFDADD, offering insights for improved diagnosis, intervention, and patient care.


Asunto(s)
Discapacidades del Desarrollo , Cardiopatías Congénitas , Fenotipo , Humanos , Discapacidades del Desarrollo/genética , Masculino , Femenino , Niño , Preescolar , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Lactante , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Mutación Missense , Adolescente
2.
J Med Genet ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548315

RESUMEN

Schaaf-Yang syndrome (SYS) is an ultra-rare neurodevelopmental disorder caused by truncating mutations in MAGEL2 Heterologous expression of wild-type (WT) or a truncated (p.Gln638*) C-terminal HA-tagged MAGEL2 revealed a shift from a primarily cytoplasmic to a more nuclear localisation for the truncated protein variant. We now extend this analysis to six additional SYS mutations on a N-terminal FLAG-tagged MAGEL2. Our results replicate and extend our previous findings, showing that all the truncated MAGEL2 proteins consistently display a predominant nuclear localisation, irrespective of the C-terminal or N-terminal position and the chemistry of the tag. The variants associated with arthrogryposis multiplex congenita display a more pronounced nuclear retention phenotype, suggesting a correlation between clinical severity and the degree of nuclear mislocalisation. These results point to a neomorphic effect of truncated MAGEL2, which might contribute to the pathogenesis of SYS.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38553405

RESUMEN

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.

4.
Cell Death Discov ; 10(1): 85, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368420

RESUMEN

Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, ß-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.

5.
J Clin Lab Anal ; 37(23-24): e24982, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38115685

RESUMEN

BACKGROUND: Previous investigations pointed out a role for antigen stimulation in Sezary syndrome (SS). High-throughput sequencing of the T cell receptor (TR) offers several applications beyond diagnostic purposes, including the study of T cell pathogenesis. METHODS: We performed high-throughput RNA sequencing of the TR alpha (TRA) and beta (TRB) genes focusing on the complementarity-determining region 3 (CDR3) in 11 SS and one erythrodermic mycosis fungoides (MF) patients. Five psoriasis patients were employed as controls. Peripheral blood CD4+ cells were isolated and RNA sequenced (HiSeq2500). High-resolution HLA typing was performed in neoplastic patients. RESULTS: Highly expanded predominant TRA and TRB CDR3 were only found in SS patients (median frequency: 94.4% and 93.7%). No remarkable CDR3 expansions were observed in psoriasis patients (median frequency of predominant TRA and TRB CDR3: 0.87% and 0.69%, p < 0.001 compared to SS). CDR3 almost identical to the predominant were identified within each SS patient and were exponentially correlated with frequencies of the predominant CDR3 (R2 = 0.918, p < 0.001). Forty-six different CDR3 were shared between SS patients displaying HLA similarities, including predominant TRA and TRB CDR3 in one patient that were found in other three patients. Additionally, 351 antigen matches were detected (Cytomegalovirus, Epstein-Barr, Influenza virus, and self-antigens), and the predominant CDR3 of two different SS patients matched CDR3 with specificity for Influenza and Epstein-Barr viruses. CONCLUSIONS: Besides detecting clonality, these findings shed light on the nature of SS-related antigens, pointing to RNA sequencing as a useful tool for simultaneous clonality and biological analysis in SS.


Asunto(s)
Psoriasis , Síndrome de Sézary , Neoplasias Cutáneas , Humanos , Síndrome de Sézary/genética , Síndrome de Sézary/patología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética , Regiones Determinantes de Complementariedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Cutáneas/genética
6.
Rev. osteoporos. metab. miner. (Internet) ; 15(1): 29-39, Ene-Mar. 2023. tab, graf
Artículo en Español | IBECS | ID: ibc-218432

RESUMEN

En los últimos años se han dedicado muchos esfuerzos a la determinación de variantes y genes que pueden ser impor-tantes en la determinación de la densidad mineral ósea (DMO) y, a su vez, en diversas patologías óseas. Para conseguiresto, la aproximación que ha presentado mayores éxitos ha sido la de los estudios de asociación de genoma completo(GWAS). En particular, en la investigación sobre la biología ósea, se han publicado más de 50 grandes GWAS o metaa-nálisis de GWAS identificando más de 500 loci genéticos asociados con diferentes parámetros óseos como son la DMO,la resistencia ósea y el riesgo de fractura. Si bien el descubrimiento de las variantes asociadas es un aspecto esencial,es igualmente importante la validación funcional de dichas variantes para dilucidar su efecto y la relación causal quetienen con la enfermedad genética. Al tratarse de un aspecto mucho más lento y tedioso, se ha convertido en el nuevoreto de esta era post-GWAS. Entre los genes que ya se han abordado se incluyen varios de la vía de WNT y en especialel gen SOST, que juega un papel muy importante tanto en la determinación de la DMO poblacional como en enferme-dades monogénicas con elevada masa ósea y que ha dado lugar a un nuevo tratamiento contra la osteoporosis. En estarevisión recogemos los principales estudios GWAS con relación a fenotipos del hueso, así como algunos ejemplos devalidaciones funcionales para analizar las asociaciones encontradas en los mismos.(AU)


Asunto(s)
Humanos , Estudio de Asociación del Genoma Completo , Densidad Ósea , Enfermedades Óseas , Osteoporosis
7.
J Med Genet ; 60(4): 406-415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36243518

RESUMEN

BACKGROUND: Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. METHODS: We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-ß 1-40 peptide (Aß1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. RESULTS: Functional studies show significantly decreased levels of secreted Aß1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. CONCLUSION: A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aß1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Fenotipo , Mutación , Proteínas/genética , Biomarcadores
8.
J Mol Med (Berl) ; 100(11): 1617-1627, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121467

RESUMEN

Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT3 receptor family. 5-HT3Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT3R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Femenino , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/metabolismo , Serotonina , Receptores de Serotonina/genética , Genotipo , Factores de Riesgo , Estudios Multicéntricos como Asunto
9.
Bone ; 161: 116450, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35623613

RESUMEN

High bone mass (HBM) disorders are a clinically and genetically heterogeneous subgroup of rare skeletal dysplasias. Here we present a case of a previously unreported familial skeletal dysplasia characterized by HBM and lucent bone lesions that we aimed to clinically characterize and genetically investigate. For phenotyping, we reviewed past clinical records and imaging tests, and performed physical examination (PE), bone densitometry, and mineral panels in affected individuals, including a male proband, his son and daughter, in addition to unaffected controls, including the proband's wife and brother. Affected individuals also underwent impact microindentation (IMI). In an effort to elucidate the disorder's molecular etiology, whole exome sequencing (WES) was performed in all individuals to filter for rare variants present only in affected ones. The cases displayed a unique skeletal phenotype with a mix of sclerotic features and lucent bone lesions, and high IMI values. Bone mineral density was very elevated in the proband and his daughter. The proband's daughter also exhibited idiopathic scoliosis (IS), in addition to mild thrombocytopenia and mild structural thyroid abnormalities, which were the only extra-skeletal abnormalities identified. WES analysis yielded 5 rare putative pathogenic variants in affected members in genes that are associated with bone metabolism including: SEM4AD, TBX18, PTCH1, PTK7, and ADGRE5. The PTK7 variant appeared as possibly implicated in the development of IS while the TBX18 and SEMA4D variants stood out as the strongest candidates for the lucent bone lesions and HBM, respectively, given their high predicted pathogenicity and putative role in bone biology. Variant functionality should be addressed in the future to assess their implication in skeletal metabolism as it is the first time that mutations in TBX18 and SEMA4D have been associated to bone developmental lesions and mineral metabolism in a clinical setting.


Asunto(s)
Enfermedades Óseas , Osteocondrodisplasias , Moléculas de Adhesión Celular , Humanos , Masculino , Mutación/genética , Linaje , Fenotipo , Proteínas Tirosina Quinasas Receptoras/genética , Secuenciación del Exoma
10.
JBMR Plus ; 6(4): e10602, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434450

RESUMEN

Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture-resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole-exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high-BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z-score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine-nucleotide-exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high-BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein-coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high-BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Bone Rep ; 16: 101181, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313637

RESUMEN

Background: Chiari malformation type 1 (C1M) is a neurological disease characterized by herniation of the cerebellar tonsils below the foramen magnum. Cranial bone constriction is suspected to be its main cause. To date, genes related to bone development (e.g. DKK1 or COL1A2) have been associated with C1M, while some bone diseases (e.g. Paget) have been found to cosegregate with C1M. Nevertheless, the association between bone mineral density (BMD) and C1M has not been investigated, yet. Here, we systematically investigate the association between C1M and BMD, and between bone related genes and C1M. Methods: We have recruited a small cohort of C1M patients (12 unrelated patients) in whom we have performed targeted sequencing of an in-house bone-related gene panel and BMD determination through non-invasive DXA. Results: In the search for association between the bone related genes and C1M we have found variants in more than one C1M patient in WNT16, CRTAP, MYO7A and NOTCH2. These genes have been either associated with craniofacial development in different ways, or previously associated with C1M (MYO7A). Regarding the potential link between BMD and C1M, we have found three osteoporotic patients and one patient who had high BMD, very close to the HBM phenotype values, although most patients had normal BMD. Conclusions: Variants in bone related genes have been repeatedly found in some C1M cases. The relationship of bone genes with C1M deserves further study, to get a clearer estimate of their contribution to its etiology. No direct correlation between BMD and C1M was observed.

12.
Orphanet J Rare Dis ; 17(1): 60, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183220

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are a group of heterogeneous conditions, which include mainly intellectual disability, developmental delay (DD) and autism spectrum disorder (ASD), among others. These diseases are highly heterogeneous and both genetic and environmental factors play an important role in many of them. The introduction of next generation sequencing (NGS) has lead to the detection of genetic variants in several genetic diseases. The main aim of this report is to discuss the impact and advantages of the implementation of NGS in the diagnosis of NDDs. Herein, we report diagnostic yields of applying whole exome sequencing in 87 families affected by NDDs and additional data of whole genome sequencing (WGS) from 12 of these families. RESULTS: The use of NGS technologies allowed identifying the causative gene alteration in approximately 36% (31/87) of the families. Among them, de novo mutation represented the most common cause of genetic alteration found in 48% (15/31) of the patients with diagnostic mutations. The majority of variants were located in known neurodevelopmental disorders genes. Nevertheless, some of the diagnoses were made after the use of GeneMatcher tools which allow the identification of additional patients carrying mutations in THOC2, SETD1B and CHD9 genes. Finally the use of WGS only allowed the identification of disease causing variants in 8% (1/12) of the patients in which previous WES failed to identify a genetic aetiology. CONCLUSION: NGS is more powerful in identifying causative pathogenic variant than conventional algorithms based on chromosomal microarray as first-tier test. Our results reinforce the implementation of NGS as a first-test in genetic diagnosis of NDDs.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Secuenciación del Exoma/métodos
13.
Genes (Basel) ; 13(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35052486

RESUMEN

Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication.


Asunto(s)
Conservadores de la Densidad Ósea/efectos adversos , Difosfonatos/efectos adversos , Fracturas del Fémur/etiología , Fracturas del Fémur/patología , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Osteoporosis Posmenopáusica/tratamiento farmacológico , Anciano , Estudios de Casos y Controles , Femenino , Fracturas del Fémur/genética , Perfilación de la Expresión Génica , Humanos , Osteoporosis Posmenopáusica/patología
14.
Sci Rep ; 12(1): 1448, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087123

RESUMEN

Although the etiology of obsessive-compulsive disorder (OCD) is largely unknown, it is accepted that OCD is a complex disorder. There is a known bi-directional interaction between the gut microbiome and brain activity. Several authors have reported associations between changes in gut microbiota and neuropsychiatric disorders, including depression or autism. Furthermore, a pediatric-onset neuropsychiatric OCD-related syndrome occurs after streptococcal infection, which might indicate that exposure to certain microbes could be involved in OCD susceptibility. However, only one study has investigated the microbiome of OCD patients to date. We performed 16S ribosomal RNA gene-based metagenomic sequencing to analyze the stool and oropharyngeal microbiome composition of 32 OCD cases and 32 age and gender matched controls. We estimated different α- and ß-diversity measures and performed LEfSe and Wilcoxon tests to assess differences in bacterial distribution. OCD stool samples showed a trend towards lower bacterial α-diversity, as well as an increase of the relative abundance of Rikenellaceae, particularly of the genus Alistipes, and lower relative abundance of Prevotellaceae, and two genera within the Lachnospiraceae: Agathobacer and Coprococcus. However, we did not observe a different Bacteroidetes to Firmicutes ratio between OCD cases and controls. Analysis of the oropharyngeal microbiome composition showed a lower Fusobacteria to Actinobacteria ratio in OCD cases. In conclusion, we observed an imbalance in the gut and oropharyngeal microbiomes of OCD cases, including, in stool, an increase of bacteria from the Rikenellaceae family, associated with gut inflammation, and a decrease of bacteria from the Coprococcus genus, associated with DOPAC synthesis.


Asunto(s)
Eje Cerebro-Intestino/inmunología , Microbioma Gastrointestinal/inmunología , Trastorno Obsesivo Compulsivo/microbiología , Orofaringe/microbiología , Adulto , Estudios de Casos y Controles , ADN Bacteriano/aislamiento & purificación , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Voluntarios Sanos , Humanos , Masculino , Metagenoma , Metagenómica , Persona de Mediana Edad , Trastorno Obsesivo Compulsivo/inmunología , ARN Ribosómico 16S/genética
15.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299011

RESUMEN

Osteoporosis is the most common metabolic bone disorder and nitrogen-containing bisphosphonates (BP) are a first line treatment for it. Yet, atypical femoral fractures (AFF), a rare adverse effect, may appear after prolonged BP administration. Given the low incidence of AFF, an underlying genetic cause that increases the susceptibility to these fractures is suspected. Previous studies uncovered rare CYP1A1 mutations in osteoporosis patients who suffered AFF after long-term BP treatment. CYP1A1 is involved in drug metabolism and steroid catabolism, making it an interesting candidate. However, a functional validation for the AFF-associated CYP1A1 mutations was lacking. Here we tested the enzymatic activity of four such CYP1A1 variants, by transfecting them into Saos-2 cells. We also tested the effect of commonly used BPs on the enzymatic activity of the CYP1A1 forms. We demonstrated that the p.Arg98Trp and p.Arg136His CYP1A1 variants have a significant negative effect on enzymatic activity. Moreover, all the BP treatments decreased CYP1A1 activity, although no specific interaction with CYP1A1 variants was found. Our results provide functional support to the hypothesis that an additive effect between CYP1A1 heterozygous mutations p.Arg98Trp and p.Arg136His, other rare mutations and long-term BP exposure might generate susceptibility to AFF.


Asunto(s)
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fracturas del Fémur/genética , Fracturas del Fémur/metabolismo , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Citocromo P-450 CYP1A1/química , Difosfonatos/uso terapéutico , Fracturas del Fémur/enzimología , Humanos , Incidencia , Mutagénesis Sitio-Dirigida , Mutación Missense , Filogenia , Alineación de Secuencia
16.
J Cell Mol Med ; 25(16): 8047-8061, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165249

RESUMEN

Irritable bowel syndrome (IBS) is a gut-brain disorder in which symptoms are shaped by serotonin acting centrally and peripherally. The serotonin transporter gene SLC6A4 has been implicated in IBS pathophysiology, but the underlying genetic mechanisms remain unclear. We sequenced the alternative P2 promoter driving intestinal SLC6A4 expression and identified single nucleotide polymorphisms (SNPs) that were associated with IBS in a discovery sample. Identified SNPs built different haplotypes, and the tagging SNP rs2020938 seems to associate with constipation-predominant IBS (IBS-C) in females. rs2020938 validation was performed in 1978 additional IBS patients and 6,038 controls from eight countries. Meta-analysis on data from 2,175 IBS patients and 6,128 controls confirmed the association with female IBS-C. Expression analyses revealed that the P2 promoter drives SLC6A4 expression primarily in the small intestine. Gene reporter assays showed a functional impact of SNPs in the P2 region. In silico analysis of the polymorphic promoter indicated differential expression regulation. Further follow-up revealed that the major allele of the tagging SNP rs2020938 correlates with differential SLC6A4 expression in the jejunum and with stool consistency, indicating functional relevance. Our data consolidate rs2020938 as a functional SNP associated with IBS-C risk in females, underlining the relevance of SLC6A4 in IBS pathogenesis.


Asunto(s)
Biomarcadores/metabolismo , Síndrome del Colon Irritable/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Serotonina/metabolismo , Femenino , Haplotipos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/metabolismo
17.
PLoS Comput Biol ; 17(2): e1007784, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33606672

RESUMEN

Rare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 70% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the 'Rare Variant Genome Wide Association Study' (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Benchmarking , Neoplasias de la Mama/genética , Complejo del Señalosoma COP9/genética , Estudios de Casos y Controles , Estudios de Cohortes , Biología Computacional , Simulación por Computador , Interpretación Estadística de Datos , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/normas , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Control de Calidad , Factores de Riesgo , Factores de Transcripción/genética , Secuenciación del Exoma/métodos , Secuenciación del Exoma/normas , Secuenciación del Exoma/estadística & datos numéricos , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/estadística & datos numéricos
18.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557041

RESUMEN

We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.


Asunto(s)
Aciltransferasas/genética , Consanguinidad , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/genética , Niño , Preescolar , Análisis Mutacional de ADN , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Linaje , Fenotipo , Radiografía , Turquía
19.
J Clin Immunol ; 40(7): 987-1000, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32671674

RESUMEN

Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.


Asunto(s)
Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Enfermedades Autoinflamatorias Hereditarias/genética , Mutación , Fosfolipasa C gamma/genética , Adolescente , Agammaglobulinemia/terapia , Autoinmunidad/genética , Biomarcadores , Caspasa 1/metabolismo , Niño , Citocinas/metabolismo , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Enfermedades Autoinflamatorias Hereditarias/terapia , Humanos , Inflamasomas/metabolismo , Masculino , Linaje , Fenotipo , Fosfolipasa C gamma/química , Fosfolipasa C gamma/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...