Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 5: e35, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27094903

RESUMEN

H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.


Asunto(s)
Genes Virales , Subtipo H7N3 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/fisiología , Virus Reordenados/fisiología , Replicación Viral , Animales , Antivirales/farmacología , Bangladesh/epidemiología , Línea Celular , Pollos/virología , Hurones/virología , Humanos , Técnicas In Vitro , Subtipo H7N3 del Virus de la Influenza A/fisiología , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Humana/epidemiología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Enfermedades de las Aves de Corral/virología , Codorniz/virología , Virus Reordenados/genética , Medición de Riesgo , Porcinos/virología
2.
Emerg Microbes Infect ; 3(2): e11, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26038508

RESUMEN

Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few 'human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage.

3.
Emerg Microbes Infect ; 2(5): e29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-26038465

RESUMEN

Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

4.
Emerg Microbes Infect ; 2(9): e58, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038489

RESUMEN

Simian foamy viruses (SFVs) are ubiquitous in non-human primates (NHPs). As in all retroviruses, reverse transcription of SFV leads to recombination and mutation. Because more humans have been shown to be infected with SFV than with any other simian borne virus, SFV is a potentially powerful model for studying the virology and epidemiology of viruses at the human/NHP interface. In Asia, SFV is likely transmitted to humans through macaque bites and scratches that occur in the context of everyday life. We analyzed multiple proviral sequences from the SFV gag gene from both humans and macaques in order to characterize retroviral transmission at the human/NHP interface in Bangladesh. Here we report evidence that humans can be concurrently infected with multiple SFV strains, with some individuals infected by both an autochthonous SFV strain as well as a strain similar to SFV found in macaques from another geographic area. These data, combined with previous results, suggest that both human-facilitated movement of macaques leading to the introduction of non-resident strains of SFV and retroviral recombination in macaques contribute to SFV diversity among humans in Bangladesh.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...