Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047617

RESUMEN

Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer's Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, ß-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCßII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo
2.
Toxicology ; 480: 153321, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113621

RESUMEN

The existence of a complex hormonal balance among glucocorticoids, androgens and estrogens involved in the regulation of Receptor for Activated C Kinase 1 (RACK1) expression and its related immune cells activation, highlights the possibility to employ this protein as screening tool for the evaluation of the immunotoxic profile of endocrine disrupting chemicals (EDCs), hormone-active substances capable of interfering with the physiologic hormonal signaling. Hence, the aim of this work was to investigate the effect of the exposure of EDCS 17α-ethynylestradiol (EE), diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) on RACK1 expression and on lipopolysaccharide (LPS)-induced activation of the human monocytic cell line THP-1, a validated model for this investigation. In line with our previous results with estrogen-active compounds, EE treatment significantly induced RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which paralleled an increase in LPS-induced IL-8, TNF-α production and CD86 expression, previously demonstrated to be dependent on RACK1/PKCß activation. EE mediates its effect on RACK1 expression through G-protein-coupled estrogen receptor (GPER) and androgen receptor (AR) ligand-independent cascade, as also suggested by in silico molecular docking simulation. Conversely, DEP and PFOS induced a dose-dependent downregulation of RACK1 promoter transcriptional activity, mRNA expression, and protein levels, which was mirrored by a reduction of IL-8, TNF-α production and CD86 expression. Mifepristone pre-treatments abolish DEP and PFOS effects, confirming their GR agonist profile, also corroborated by molecular docking. Altogether, our data confirm that RACK1 represents an interesting target of steroid active compounds, which expression offers the opportunity to screen the immunotoxic potential of different hormone-active substances of concerns due to their human exposure and environmental persistence.


Asunto(s)
Disruptores Endocrinos , Ácidos Alcanesulfónicos , Andrógenos , Disruptores Endocrinos/toxicidad , Estrógenos , Fluorocarburos , Proteínas de Unión al GTP/metabolismo , Glucocorticoides , Humanos , Interleucina-8 , Ligandos , Lipopolisacáridos/toxicidad , Mifepristona , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias , ARN Mensajero/metabolismo , Receptores de Cinasa C Activada/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
3.
Environ Toxicol Pharmacol ; 95: 103971, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36084878

RESUMEN

We have previously demonstrated that RACK1, which expression is under steroid hormone control, plays an important role in the activation of immune cells and its expression can be useful to evaluate the immunotoxic profile of endocrine disrupting chemicals (EDCs). Hence, we investigated the effects of three contaminating and persistent pesticides: the fungicide vinclozolin (VIN), the herbicide atrazine (ATR) and the insecticide cypermethrin (CYP) on RACK1 expression and on innate immune response. VIN resulted in modest alteration of RACK1 while ATR and CYP reduced in a dose dependent manner RACK1 expression, ultimately leading to the decrease in lipopolysaccharide-induced IL-8 and TNF-α release and CD86 and CD54 surface marker expression. Moreover, our data indicate that, after exposure to EDCs, alterations of RACK1 expression can also occur with mechanisms not directly mediated by an interaction with a nuclear or membrane steroid receptors. Therefore, RACK1 could represent a useful EDCs screening tool to evaluate their immunotoxic potential and to dissect their mechanisms of action.


Asunto(s)
Atrazina , Disruptores Endocrinos , Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Atrazina/toxicidad , Disruptores Endocrinos/toxicidad , Hormonas , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos , Proteínas de Neoplasias , Plaguicidas/toxicidad , Receptores de Cinasa C Activada , Células THP-1 , Factor de Necrosis Tumoral alfa
4.
Cells ; 11(16)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36010666

RESUMEN

The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC-all ribosome-related processes required for proteostasis regulation-can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer's disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.


Asunto(s)
Demencia Frontotemporal , Proteínas Ribosómicas , Gránulos Citoplasmáticos/metabolismo , Demencia Frontotemporal/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteostasis , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Gránulos de Estrés
5.
Signal Transduct Target Ther ; 7(1): 41, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136018

RESUMEN

The term "circadian rhythms" describes endogenous oscillations with ca. 24-h period associated with the earth's daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Neoplasias , Medicina de Precisión , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/terapia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia
6.
Br J Pharmacol ; 179(12): 2813-2828, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-32726469

RESUMEN

Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer. LINKED ARTICLES: This article is part of a themed issue on New avenues in cancer prevention and treatment (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.12/issuetoc.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Cinasa C Activada/química , Receptores de Cinasa C Activada/genética , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo
7.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943794

RESUMEN

By controlling the change of the backbones of several cellular substrates, the peptidyl-prolyl cis-trans isomerase Pin1 acts as key fine-tuner and amplifier of multiple signaling pathways, thereby inducing several biological consequences, both in physiological and pathological conditions. Data from the literature indicate a prominent role of Pin1 in the regulating of vascular homeostasis. In this review, we will critically dissect Pin1's role as conformational switch regulating the homeostasis of vascular endothelium, by specifically modulating nitric oxide (NO) bioavailability. In this regard, Pin1 has been reported to directly control NO production by interacting with bovine endothelial nitric oxide synthase (eNOS) at Ser116-Pro117 (human equivalent is Ser114-Pro115) in a phosphorylation-dependent manner, regulating its catalytic activity, as well as by regulating other intracellular players, such as VEGF and TGF-ß, thereby impinging upon NO release. Furthermore, since Pin1 has been found to act as a critical driver of vascular cell proliferation, apoptosis, and inflammation, with implication in many vascular diseases (e.g., diabetes, atherosclerosis, hypertension, and cardiac hypertrophy), evidence indicating that Pin1 may serve a pivotal role in vascular endothelium will be discussed. Understanding the role of Pin1 in vascular homeostasis is crucial in terms of finding a new possible therapeutic player and target in vascular pathologies, including those affecting the elderly (such as small and large vessel diseases and vascular dementia) or those promoting the full expression of neurodegenerative dementing diseases.


Asunto(s)
Envejecimiento/metabolismo , Endotelio Vascular/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Enfermedades Vasculares/metabolismo , Animales , Endotelio Vascular/fisiopatología , Humanos , Modelos Biológicos , Óxido Nítrico/metabolismo , Enfermedades Vasculares/fisiopatología
8.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831222

RESUMEN

Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones' activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.


Asunto(s)
Membrana Celular/metabolismo , Hormonas/metabolismo , Neoplasias/metabolismo , Receptores de Esteroides/genética , Animales , Humanos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Receptores de Esteroides/metabolismo , Transducción de Señal
9.
Front Pharmacol ; 12: 743991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621174

RESUMEN

Receptor for activated C kinase 1 (RACK1) has an important role in immune activation, and is regulated through a balance between glucocorticoid and androgen levels. We have previously demonstrated that RACK1 expression can serve as a marker for evaluation of immunotoxic profiles of hormone-active substances, such as endocrine-disrupting chemicals (EDCs). In this study, we investigated the effects of three bisphenols (BPA, BPAF, BPS) on RACK1 expression and on the innate immune responses in the THP-1 human promyelocytic cell line, a validated model for this investigation. BPA and BPAF reduced RACK1 promoter transcriptional activity, mRNA expression, and protein levels. However, BPS had the opposite effect. As expected, these results on RACK1 were paralleled by lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) production. Since BPA and BPAF induced RACK1 expression in the presence of glucocorticoid receptor (GR) antagonist mifepristone, a role of G-protein-coupled estrogen receptor (GPER) has been considered due to their known estrogenic profile. Therefore, additional molecular effects of BPA and BPAF were unmasked after treatment with different inhibitors of well-known pivotal players of GPER-mediated signaling. BPA exerted its effects on RACK1 via NF-κB, as shown using the NF-κB inhibitor BAY11-7085 and NF-κB-specific luciferase reporter assay. Conversely, BPAF induced RACK1 up-regulation via androgen receptor (AR) activation, as confirmed by treatment with AR antagonist flutamide. Indeed, a biased agonism profile for BPA and BPAF for GPER was suggested based on their different binding modes revealed by our molecular docking. Altogether, our data suggest that RACK1 could represent an important target of EDCs and serves as a screening tool for their immunotoxic potential. Furthermore, RACK1 can be exploited to unmask multiple molecular interactions of hormone-active substances to better dissect out their mechanisms of action.

10.
Planta Med ; 87(12-13): 1110-1116, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34359085

RESUMEN

The novel Regulation 2017/745/EC on medical devices introduces and strengthens the role of "medical devices made of substances", which mostly include substances of natural origin. Natural products may follow different regulations, from food to therapeutics. Concerning their isolated constituents, extracts are characterized by a complexity that is not easily tackled from both a scientific and a regulatory point of view, but more importantly, from a therapeutic point of view. The evidence-based approach applied to isolated molecules requires appropriate evidence of quality, efficacy, and safety. The same needs must be reached for complex substances by finding appropriate methods to generate this evidence, and in addition, defining an appropriate regulatory field for them. From a scientific point of view, new methods, such as those proposed by systems biology, are available and applicable to complex substances. From a regulatory point of view, Directive 2001/83/EC on medicinal products seems to be modeled on single (or combinations of single) molecule products. On the other hand, Regulation 2017/745/EC on medical devices seems to apply to complex substances without derogating on quality, efficacy, and safety. The regulation specifically names and strengthens medical devices that include substances, mostly of natural origin, introducing the official term "medical devices made of substances". This paper discusses and proposes an interpretation of important terms connected to this legislation, regarding both scientific and regulatory issues, and the opportunities the regulation may give for innovation and therapeutic improvement with natural complex substances.


Asunto(s)
Productos Biológicos
11.
Neurobiol Stress ; 15: 100372, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34401408

RESUMEN

Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal (HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress (CMS) paradigm, we studied the role of the Grß-RACK1-Bdnf signaling in the different susceptibility to chronic stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.

12.
Front Mol Neurosci ; 14: 635880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716668

RESUMEN

Beside its widely studied role in the pathogenesis of Alzheimer's disease (AD), ß-amyloid (Aß) is a normal and soluble product of neuronal metabolism that regulates several key physiological functions, exerting neuromodulatory effects on synaptic plasticity, memory, and neurotransmitter release. Such effects have been observed to occur in a hormetic fashion, with Aß exhibiting a dual role influenced by its concentration, the different isoforms, or aggregation forms of the peptide. However, to date, our knowledge about the physiological functions of Aß and, in particular, its modulatory role on synaptic activity and neurotransmission in the normal brain is fragmentary, thus hindering a clear comprehension of the biological mechanisms underlying the derangement from function to dysfunction. In particular, according to the amyloid cascade hypothesis, the switch from physiology to pathology is linked to the abnormal increase in Aß levels, due to an imbalance in Aß production and clearance. In this regard, increased Aß levels have been hypothesized to induce early defects in synaptic function and such alterations have been suggested to account, at least in part, for the onset of neuropsychiatric symptoms (e.g., apathy, anxiety, changes in mood, depression, and agitation/aggression), frequently observed in the prodromal stage of AD. Therefore, understanding the biological mechanisms underlying early synaptic alterations in AD is a key starting point to frame the relevant time windows for AD treatment and to gain insight into AD etiopathogenesis.

13.
Adv Exp Med Biol ; 1275: 151-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539015

RESUMEN

Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCß and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCß and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.


Asunto(s)
Presentación de Antígeno , Transducción de Señal , Isoformas de Proteínas , Proteína Quinasa C beta/metabolismo
14.
Mol Psychiatry ; 26(1): 280-295, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32382138

RESUMEN

Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Neoplasias/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Neoplasias/enzimología , Neoplasias/genética , Isomerasa de Peptidilprolil/metabolismo , Fosforilación , Proteína p53 Supresora de Tumor
15.
Front Toxicol ; 3: 649024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295136

RESUMEN

Endocrine disruptors (ED) are natural and anthropogenic chemicals that can interfere with hormonal systems at different levels. As such, ED-induced alterations in hormone functions have been implicated in many diseases and pathological conditions, including adverse developmental, reproductive, neurological, cardiovascular, and immunological effects in mammals. The fact that ED may compete with several endogenous hormones for multiple receptors and pathways is not always fully considered. This results in a complex response that depends on the cellular context in terms of receptors and interacting proteins and, thus, may differ between tissues and circumstances. Microglia, neurons, and other immune cells are potential targets and still underappreciated actors in endocrine disruption. Due to the large scale of this topic, this review is not intended to provide a comprehensive review nor a systematic review of chemicals identified as endocrine disruptors. It focuses on the immune-neuro-endocrine network in ED toxicity and research gaps, using atrazine as an example to highlight this complexity and the interrelationship between the immune, endocrine, and nervous systems, and ED.

16.
Mol Neurobiol ; 58(3): 1062-1073, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33083964

RESUMEN

The peptidyl-prolyl isomerase Pin1 is a unique enzyme catalyzing the isomerization of the peptide bond between phosphorylated serine-proline or threonine-proline motifs in proteins, thereby regulating a wide spectrum of protein functions, including folding, intracellular signaling, transcription, cell cycle progression, and apoptosis. Pin1 has been reported to act as a key molecular switch inducing cell-type-specific effects, critically depending on the different phosphorylation patterns of its targets within different biological contexts. While its implication in proliferating cells, and, in particular, in the field of cancer, has been widely characterized, less is known about Pin1 biological functions in terminally differentiated and post-mitotic neurons. Notably, Pin1 is widely expressed in the central and peripheral nervous system, where it regulates a variety of neuronal processes, including neuronal development, apoptosis, and synaptic activity. However, despite studies reporting the interaction of Pin1 with neuronal substrates or its involvement in specific signaling pathways, a more comprehensive understanding of its biological functions at neuronal level is still lacking. Besides its implication in physiological processes, a growing body of evidence suggests the crucial involvement of Pin1 in aging and age-related and neurodegenerative diseases, including Alzheimer's disease, Parkinson disease, frontotemporal dementias, Huntington disease, and amyotrophic lateral sclerosis, where it mediates profoundly different effects, ranging from neuroprotective to neurotoxic. Therefore, a more detailed understanding of Pin1 neuronal functions may provide relevant information on the consequences of Pin1 deregulation in age-related and neurodegenerative disorders.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Degeneración Nerviosa/enzimología , Sistema Nervioso/embriología , Neuronas/enzimología , Neuronas/patología , Transducción de Señal , Envejecimiento/patología , Animales , Humanos , Degeneración Nerviosa/patología
17.
Oncogenesis ; 9(12): 105, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311444

RESUMEN

Recent data indicate that receptor for activated C kinase 1 (RACK1) is a putative prognostic marker and drug target in breast cancer (BC). High RACK1 expression is negatively associated with overall survival, as it seems to promote BC progression. In tumors, RACK1 expression is controlled by a complex balance between glucocorticoids and androgens. Given the fact that androgens and androgenic derivatives can inhibit BC cell proliferation and migration, the role of androgen signaling in regulating RACK1 transcription in mammary tumors is of pivotal interest. Here, we provide evidence that nandrolone (19-nortosterone) inhibits BC cell proliferation and migration by antagonizing the PI3K/Akt/NF-κB signaling pathway, which eventually results in RACK1 downregulation. We also show that nandrolone impairs the PI3K/Akt/NF-κB signaling pathway and decreases RACK1 expression via binding to the membrane-bound receptor, oxoeicosanoid receptor 1 (OXER1). High levels of OXER1 are observed in several BC cell lines and correlate with RACK1 expression and poor prognosis. Our data provide evidence on the role played by the OXER1-dependent intracellular pathway in BC progression and shed light on the mechanisms underlying membrane-dependent androgen effects on RACK1 regulation. Besides the mechanistic relevance, the results of the study are of interest from a translational prospective. In fact, they identify a new and actionable pathway to be used for the design of innovative and rational therapeutic strategies in the context of the personalized treatment of BC. In addition, they draw attention on nandrolone-based compounds that lack hormonal activity as potential anti-tumor agents.

18.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287384

RESUMEN

Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.


Asunto(s)
Disruptores Endocrinos/farmacología , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptores de Cinasa C Activada/metabolismo , Microambiente Tumoral/efectos de los fármacos , Animales , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Sistema Inmunológico , Proteínas de Neoplasias/genética , Neoplasias/etiología , Unión Proteica , Receptores de Cinasa C Activada/genética , Riesgo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
19.
Front Pharmacol ; 11: 1256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922294

RESUMEN

The transcription factor Nrf2 coordinates a multifaceted response to various forms of stress and to inflammatory processes, maintaining a homeostatic intracellular environment. Nrf2 anti-inflammatory activity has been related to the crosstalk with the transcription factor NF-κB, a pivotal mediator of inflammatory responses and of multiple aspects of innate and adaptative immune functions. However, the underlying molecular basis has not been completely clarified. By combining into new chemical entities, the hydroxycinnamoyl motif from curcumin and the allyl mercaptan moiety of garlic organosulfur compounds, we tested a set of molecules, carrying (pro)electrophilic features responsible for the activation of the Nrf2 pathway, as valuable pharmacologic tools to dissect the mechanistic connection between Nrf2 and NF-κB. We investigated whether the activation of the Nrf2 pathway by (pro)electrophilic compounds may interfere with the secretion of pro-inflammatory cytokines, during immune stimulation, in a human immortalized monocyte-like cell line (THP-1). The capability of compounds to affect the NF-κB pathway was also evaluated. We assessed the compounds-mediated regulation of cytokine and chemokine release by using Luminex X-MAP® technology in human primary peripheral blood mononuclear cells (PBMCs) upon LPS stimulation. We found that all compounds, also in the absence of electrophilic moieties, significantly suppressed the LPS-evoked secretion of pro-inflammatory cytokines such as TNFα and IL-1ß, but not of IL-8, in THP-1 cells. A reduction in the release of pro-inflammatory mediators similar to that induced by the compounds was also observed after siRNA mediated-Nrf2 knockdown, thus indicating that the attenuation of cytokine secretion cannot be directly ascribed to the activation of Nrf2 signaling pathway. Moreover, all compounds, with the exception of compound 1, attenuated the LPS-induced activation of the NF-κB pathway, by reducing the upstream phosphorylation of IκB, the NF-κB nuclear translocation, as well as the activation of NF-κB promoter. In human PBMCs, compound 4 and CURC attenuated TNFα release as observed in THP-1 cells, and all compounds acting as Nrf2 inducers significantly decreased the levels of MCP-1/CCL2, as well as the release of the pro-inflammatory cytokine IL-12. Altogether, the compounds induced a differential modulation of innate immune cytokine release, by differently regulating Nrf2 and NF-κB intracellular signaling pathways.

20.
Alzheimers Dement (N Y) ; 6(1): e12044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671184

RESUMEN

The failures in Alzheimer's disease (AD) therapy strongly suggest the importance of reconsidering the research strategies analyzing other mechanisms that may take place in AD as well as, in general, in other neurodegenerative dementias. Taking into account that in AD a variety of defects result in neurotransmitter activity and signaling efficiency imbalance, neuronal cell degeneration and defects in damage/repair systems, aberrant and abortive cell cycle, glial dysfunction, and neuroinflammation, a target may be represented by the intracellular signaling machinery provided by the kinome. In particular, based on the observations of a relationship between cancer and AD, we focused on cancer kinases for targeting neurodegeneration, highlighting the importance of targeting the intracellular pathways at the intersection between cell metabolism control/duplication, the inhibition of which may stop a progression in neurodegeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...