Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-359836

RESUMEN

We have previously reported that the SARS-CoV-2 neutralizing antibody, STI-2020, potently inhibits cytopathic effects of infection by genetically diverse clinical SARS-CoV-2 pandemic isolates in vitro, and has demonstrated efficacy in a hamster model of COVID-19 when administered by the intravenous route immediately following infection. We now have extended our in vivo studies of STI-2020 to include disease treatment efficacy, profiling of biodistribution of STI-2020 in mice when antibody is delivered intranasally (IN) or intravenously (IV), as well as pharmacokinetics in mice following IN antibody administration. Importantly, SARS-CoV-2-infected hamsters were treated with STI-2020 using these routes, and treatment effects on severity and duration of COVID-19-like disease in this model were evaluated. In SARS-CoV-2 infected hamsters, treatment with STI-2020 12 hours post-infection using the IN route led to a decrease in severity of clinical disease signs and a more robust recovery during 9 days of infection as compared to animals treated with an isotype control antibody. Treatment via the IV route using the same dose and timing regimen resulted in a decrease in the average number of consecutive days that infected animals experienced weight loss, shortening the duration of disease and allowing recovery to begin more rapidly in STI-2020 treated animals. Following IN administration in mice, STI-2020 was detected within 10 minutes in both lung tissue and lung lavage. The half-life of STI-2020 in lung tissue is approximately 25 hours. We are currently investigating the minimum effective dose of IN-delivered STI-2020 in the hamster model as well as establishing the relative benefit of delivering neutralizing antibodies by both IV and IN routes.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-028589

RESUMEN

The ongoing COVID-19 pandemic continues to pose a major public health burden around the world. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over one million people worldwide as of April, 2020, and has led to the deaths of nearly 300,000 people. No approved vaccines or treatments in the USA currently exist for COVID-19, so there is an urgent need to develop effective countermeasures. The IMPDH inhibitor merimepodib (MMPD) is an investigational antiviral drug that acts as a noncompetitive inhibitor of IMPDH. It has been demonstrated to suppress replication of a variety of emerging RNA viruses. We report here that MMPD suppresses SARS-CoV-2 replication in vitro. After overnight pretreatment of Vero cells with 10 M of MMPD, viral titers were reduced by 4 logs of magnitude, while pretreatment for 4 hours resulted in a 3-log drop. The effect is dose-dependent, and concentrations as low as 3.3 M significantly reduced viral titers when the cells were pretreated prior to infection. The results of this study provide evidence that MMPD may be a viable treatment option for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA