Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598939

RESUMEN

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cristalografía , Pandemias , Ligandos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Antivirales/química
2.
Nat Chem Biol ; 19(4): 416-422, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36302898

RESUMEN

The human MAS-related G protein-coupled receptor X1 (MRGPRX1) is preferentially expressed in the small-diameter primary sensory neurons and involved in the mediation of nociception and pruritus. Central activation of MRGPRX1 by the endogenous opioid peptide fragment BAM8-22 and its positive allosteric modulator ML382 has been shown to effectively inhibit persistent pain, making MRGPRX1 a promising target for non-opioid pain treatment. However, the activation mechanism of MRGPRX1 is still largely unknown. Here we report three high-resolution cryogenic electron microscopy structures of MRGPRX1-Gαq in complex with BAM8-22 alone, with BAM8-22 and ML382 simultaneously as well as with a synthetic agonist compound-16. These structures reveal the agonist binding mode for MRGPRX1 and illuminate the structural requirements for positive allosteric modulation. Collectively, our findings provide a molecular understanding of the activation and allosteric modulation of the MRGPRX1 receptor, which could facilitate the structure-based design of non-opioid pain-relieving drugs.


Asunto(s)
Dolor , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica , Sitio Alostérico
3.
bioRxiv ; 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35794891

RESUMEN

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1.

4.
J Med Chem ; 64(24): 17887-17900, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34898210

RESUMEN

Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , Automatización , Descubrimiento de Drogas/métodos , Humanos , Ligandos
5.
Drug Discov Today Technol ; 40: 44-57, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34916022

RESUMEN

Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became established during the last two decades. Its rationality and low entry costs make it appealing, and the numerous examples of approved drugs discovered through FBDD validate the approach. However, FBDD still faces numerous challenges. Perhaps the most important one is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L) optimization is resource-intensive and is therefore limited in the possibilities that can be actively pursued. In silico strategies play an important role in F2L, as they can perform a deeper exploration of chemical space, prioritize molecules with high probabilities of being active and generate non-obvious ideas. Here we provide a critical overview of current in silico strategies in F2L optimization and highlight their remarkable impact. While very effective, most solutions are target- or fragment- specific. We propose that fully integrated in silico strategies, capable of automatically and systematically exploring the fast-growing available chemical space can have a significant impact on accelerating the release of fragment originated drugs.


Asunto(s)
Descubrimiento de Drogas
6.
Chembiochem ; 22(9): 1597-1608, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400854

RESUMEN

SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 µM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 µM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sitio Alostérico , Sitios de Unión , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Proteínas HSP90 de Choque Térmico/química , N-Metiltransferasa de Histona-Lisina/química , Humanos , Cinética , Ligandos , Simulación de Dinámica Molecular , Piperidinas/química , Piperidinas/metabolismo , Unión Proteica , Estereoisomerismo
7.
RSC Med Chem ; 11(5): 552-558, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479656

RESUMEN

One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region. We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment, which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding assay based on microscale thermophoresis.

8.
ChemMedChem ; 14(10): 1011-1021, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30786178

RESUMEN

Thanks to recent guidelines, the design of safe and effective covalent drugs has gained significant interest. Other than targeting non-conserved nucleophilic residues, optimizing the noncovalent binding framework is important to improve potency and selectivity of covalent binders toward the desired target. Significant efforts have been made in extending the computational toolkits to include a covalent mechanism of protein targeting, like in the development of covalent docking methods for binding mode prediction. To highlight the value of the noncovalent complex in the covalent binding process, here we describe a new protocol using tethered and constrained docking in combination with Dynamic Undocking (DUck) as a tool to privilege strong protein binders for the identification of novel covalent inhibitors. At the end of the protocol, dedicated covalent docking methods were used to rank and select the virtual hits based on the predicted binding mode. By validating the method on JAK3 and KRas, we demonstrate how this fast iterative protocol can be applied to explore a wide chemical space and identify potent targeted covalent inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Janus Quinasa 3/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/química , Apoptosis , Sitios de Unión , Línea Celular , Supervivencia Celular , Escherichia coli , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Programas Informáticos , Relación Estructura-Actividad
9.
Curr Opin Pharmacol ; 42: 34-39, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30041063

RESUMEN

There have been substantial advances in the application of molecular modelling and simulation to drug discovery in recent years, as massive increases in computer power are coupled with continued development in the underlying methods and understanding of how to apply them. Here, we survey recent advances in one particular area-predicting how a known ligand binds to a particular protein. We focus on the four contributing classes of calculation: predicting where a binding site is on a protein; characterizing where chemical functional groups will bind to that site; molecular docking to generate a binding mode for a ligand and dynamics simulations to refine that pose and allow for protein conformation change. Examples of successful application are provided for each class.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Unión Proteica/fisiología , Proteínas/metabolismo , Animales , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA