Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38760152

RESUMEN

BACKGROUND: The nigrostriatal system is especially vulnerable to neurodegeneration in Parkinson's disease (PD) and the blood-brain barrier (BBB) is a limiting factor for delivery of therapeutic agents to the brain. This pilot study aimed to demonstrate safety, feasibility and tissue penetration (by 18F-Choline-positron emission tomography (PET)) of MR-guided focused ultrasound (MRgFUS) simultaneous BBB opening (BBB-O) in the substantia nigra (SN) and putamen in PD. METHODS: Three patients underwent MRgFUS for midbrain and putamen BBB-O. Patients were evaluated clinically and underwent brain MRI with gadolinium (baseline, 24 hours, 14 days and 3 months postprocedure). In two patients, BBB-O was repeated after 2-3 weeks, and 18F-Choline-PET was performed immediately after. RESULTS: The right SN and putamen were simultaneously opened unilaterally in 3 patients once and the left SN in 1 patient in a different session. No severe clinical or neuroimaging adverse events developed in any patient. 18F-Choline-PET uptake was enhanced in the targeted SN and putamen regions. CONCLUSION: BBB-O of the nigrostriatal system is a feasible and well-tolerated approach in patients with PD. 18F-Choline-PET uptake indicates penetration into the parenchyma after BBB-O, which suggests that the opening is functionally effective. This minimally invasive technique could facilitate delivery of putative neurorestorative molecules to brain regions vulnerable to neurodegeneration.

2.
Brain Stimul ; 12(1): 1-8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30181107

RESUMEN

BACKGROUND: Essential tremor (ET) is one of the most common movement disorders of adults, characterized by postural and kinetic tremor. With drug treatment only partially efficient, new treatments are being developed. OBJECTIVES: The goal of this study was to demonstrate the feasibility of non-thermal focused-ultrasound (FUS) to induce tremor-suppression in an ET rat model. METHODS: Harmaline-induced tremor rats were treated with FUS along the inferior olivary (IO) system. EMG was recorded continuously during treatment in order to quantify FUS-induced tremor suppression. T2-weighted MRI was performed immediately following treatment and periodically thereafter. RESULTS: FUS treatment at an intensity of 27.2 W/cm2 (Isppa) induced significant reduction of tremor in 12 out of 13 ET rats. Tremor frequency was reduced from 6.2 ±â€¯2.8 to 2 ±â€¯1 Hz, p < 0.0003. In 6 of the 12 responding rats, tremor was completely suppressed. Response duration was 70 ±â€¯61s, on average. FUS induced motor response, depicted as movement of the tail and/or the limbs synchronized with the FUS sonication, was also demonstrated both in ET rats and in naïve rats when treated in the medulla oblongata region. CONCLUSIONS: These results demonstrate the feasibly for obtaining significant tremor reduction or tremor suppression induced by non-thermal, non-invasive, reversible focused-ultrasound.


Asunto(s)
Temblor Esencial/terapia , Terapia por Ultrasonido/métodos , Animales , Temblor Esencial/etiología , Harmalina/toxicidad , Masculino , Ratas
3.
Ultrasound Med Biol ; 44(5): 1022-1030, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29501283

RESUMEN

The goal of this study was to determine the feasibility of focused ultrasound-based neuromodulation affecting auditory evoked potentials (AEPs) in animals. Focused ultrasound-induced suppression of AEPs was performed in 22 rats and 5 pigs: Repetitive sounds were produced, and the induced AEPs were recorded before and repeatedly after FUS treatment of the auditory pathway. All treated animals exhibited a decrease in AEP amplitude post-treatment in contrast to animals undergoing the sham treatment. Suppression was weaker for rats treated at 2.3 W/cm2 (amplitudes decreased to 59.8 ± 3.3% of baseline) than rats treated at 4.6 W/cm2 (36.9 ± 7.5%, p <0.001). Amplitudes of the treated pigs decreased to 27.7 ± 5.9% of baseline. This effect lasted between 30 min and 1 mo in most treated animals. No evidence of heating during treatment or later brain damage/edema was observed. These results demonstrate the feasibility of inducing significant neuromodulation with non-thermal, non-invasive, reversible focused ultrasound. The long recovery times may have clinical implications.


Asunto(s)
Vías Auditivas/fisiopatología , Potenciales Evocados Auditivos , Ondas Ultrasónicas , Estimulación Acústica , Animales , Estudios de Factibilidad , Femenino , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...