Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166867, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678536

RESUMEN

Hydroponics is a resource-efficient system that increases food production and enhances the overall sustainability of agricultural systems, particularly in arid zones with prevalent water scarcity and limited areas of arable land. This study investigated zero-waste hydroponics systems fed by agricultural waste streams as nutrient sources under desert conditions. Three pilot-scale systems were tested and compared. The first hydroponics system ("HPAP") received its nutrient source internally from an aquaponic system, including supernatant from the anaerobic digestion of fish sludge. The second system ("HPAD") was sourced by the supernatant of plant waste anaerobic digestion, and the third served as a control that was fed by commercial Hoagland solution ("HPHS"). Fresh weight production was similar in all treatments, ranging from 488 to 539 g per shoot, corresponding to 5.7 to 6.0 kg total wet weight per m2. The recovery of N and P from wastes and their subsequent uptake by plants was highly efficient, with rates of 77 % for N and 65 % for P. Plants that were fed using supernatants demonstrated slightly higher plant quality compared with those grown in Hoagland solution. Over the duration of the full study (3 months), water was only used to compensate for evapotranspiration, corresponding to ~10 L per kg of lettuce. The potential health risk for heavy metals was negligible, as assessed using the health-risk index (HRI < 1) and targeted hazardous quotient (THQ < 1). The results of this study demonstrate that careful management can significantly reduce pollution, increase the recovery of nutrients and water, and improve hydroponics production.


Asunto(s)
Acuicultura , Agua , Animales , Hidroponía/métodos , Anaerobiosis , Acuicultura/métodos , Nutrientes
2.
Plant Sci ; 325: 111460, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36122813

RESUMEN

Accessing freshwater resources for agriculture becomes more complex due to increasing demands and declining water quality. Alternative water sources, such as saline water, require ad hoc solutions. Therefore, understanding roots' response to saline water is crucial for future agriculture. We examined the response of three grapevine rootstocks (Paulsen 1103, Richter 110 and SO4) to salt stress. The rootstocks were subjected to two salinity treatments: 10 mM and 30 mM NaCl (EC = 2 and 4 ds/m, respectively). Root and shoot samples were taken at the end of the experiment for morphologic and ionomic analyses. The specific root area (SRA) increased in response to salinity for all three rootstocks due to root tissue density and average root diameter reductions. Salinity also led to increased root Na+ and Cl- contents and reduced root K+/Na+ ratio, parallel to increased leaf Cl- but not Na+ contents. SO4 showed improved chloride and sodium exclusion, concomitant with its highest SRA, resulting from the increase in its thin roots' contribution to the total root system surface area. We suggest that enhanced SRA combined with decreased root tissue density and diameter may improve grapevines' salt exclusion by less salt uptake from the soil.


Asunto(s)
Vitis , Vitis/fisiología , Raíces de Plantas/fisiología , Estrés Salino , Hojas de la Planta/fisiología , Salinidad , Sodio/análisis , Cloruros
3.
Hortic Res ; 9: uhac061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531316

RESUMEN

Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.

4.
Plant Direct ; 6(1): e371, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028493

RESUMEN

The rise in atmospheric CO2 has a profound impact on plants physiology and performance. Stomatal gas exchange such as reduction in water loss via transpiration and higher photosynthetic rates are among the key plant physiological traits altered by the increase of CO2. Water acquired in plant roots is transported via the xylem vessels to the shoots. Under conditions of elevated CO2, water flux decreases due to higher water use efficiency and a decline in stomatal conductance. However, the mechanism by which the shoot vascular development is affected under elevated CO2 is still largely unclear in herbaceous crops. In the current study, tomato plants were exposed to either 400 or 800 ppm of CO2 and were analyzed for growth, leaf area, gas exchange rate, and petiole anatomy. Elevated CO2 caused a reduction in metaxylem vessel diameter, which in turn, decreased leaf theatrical conductivity by 400% as compared with plants grown under ambient CO2. This work links anatomical changes in the petioles to the rise in atmospheric CO2 and water use. Plant water demand declined under elevated CO2, while photosynthesis increased. Thus, the decrease in leaf specific conductivity was attributed to lower water consumption in leaf gas exchange and, by extension, to higher leaf water use efficiency. As the global climate changes and water scarcity becomes more common, such anatomical alterations caused by elevated CO2 may affect plant response to water limitation. Further research on petiole anatomical alterations under conditions of combined climate change factors such as drought and heat with elevated CO2 may assist in clarifying the responses expected by future climate scenarios.

5.
Front Plant Sci ; 13: 1067498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684760

RESUMEN

Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.

6.
Sci Rep ; 11(1): 15259, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315939

RESUMEN

Geodiversity refers to the variety of geological and physical elements as well as to geomorphological processes of the earth surface. Heterogeneity of the physical environment has an impact on plant diversity. In recent years, the relations between geodiversity and biodiversity has gained attention in conservation biology, especially in the context of climate change. In this study, we assessed the spatial and temporal change in plant's community structure in a semi-arid region, Sayeret Shaked Long Term Ecosystem Research (LTER) station, Israel. Vegetation surveys were conducted on different hillslopes, either with or without rock covers in order to study the spatial trends of hillslope geodiversity. The surveys were conducted for two consecutive years (2016 and 2017), of which the second year was drier and hotter and therefore permitted to investigate the temporal change of plant's community structure. The results of the spatial trends show that (1) geodiversity increases vegetation biodiversity and promotes perennial plants and those of the temporal change show that (2) the positive effect of geodiversity on plants' community structure and species richness is greater in the drier year than that in a wetter year. The main insight is that in these drylands, hillslopes with higher geodiversity appear to buffer the effect of drier years, and supported a more diverse plant community than lower geodiversity hillslopes.

7.
Environ Pollut ; 289: 117788, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332167

RESUMEN

Crude oil pollution is a global environmental concern since it persists in the environment longer than most conventional carbon sources. In December 2014, the hyper-arid Evrona Nature Reserve, Israel, experienced large-scale contamination when crude oil spilled. The overarching goal of the study was to investigate the possible changes, caused by an accidental crude oil spill, in the leaf reflectance and biochemical composition of four natural habitat desert shrubs. The specific objectives were (1) to monitor the biochemical properties of dominant shrub species in the polluted and control areas; (2) to study the long-term consequences of the contamination; (3) to provide information that will assist in planning rehabilitation actions; and (4) to explore the feasibility of vegetation indices (VIs), along with the machine learning (ML) technique, for detecting stressed shrubs based on the full spectral range. Four measurement campaigns were conducted in 2018 and 2019. Along with the various stress indicators, field spectral measurements were performed in the range of 350-2500 nm. A regression analysis to examine the relation of leaf reflectance to biochemical contents was carried out, to reveal the relevant wavelengths in which polluted and control plants differ. Vegetation indices applied in previous studies were found to be less sensitive for indirect detection of long-term oil contamination. A novel spectral index, based on indicative spectral bands, named the "normalized blue-green stress index" (NBGSI), was established. The NBGSI distinguished significantly between shrubs located in the polluted and in the control areas. The NBGSI showed a strong linear correlation with pheophytin a. Machine learning classification algorithms obtained high overall prediction accuracy in distinguishing between shrubs located in the oil-polluted and the control sites, indicating internal component differences. The findings of this study demonstrate the efficacy of indirect and non-destructive spectral tools for detecting and monitoring oil pollution stress in shrubs.


Asunto(s)
Contaminación por Petróleo , Petróleo , Carbono , Ecosistema , Contaminación por Petróleo/análisis , Plantas
8.
Oecologia ; 196(2): 353-361, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34008141

RESUMEN

Dew is an important water resource for plants in most deserts. The mechanism that allows desert plants to use dew water was studied using an isotopic water tracer approach. Most plants use water directly from the soil; the roots transfer the water to the rest of the plant, where it is required for all metabolic functions. However, many plants can also take up water into their leaves and stems. Examining the dew water uptake pathways in desert plants can lend insight on another all water-use pathways examination. We determined where and how dew water enters plants in the water limited Negev desert. Highly depleted isotopic water was sprayed on three different dominant plant species of the Negev desert-Artemesia sieberi, Salsola inermis and Haloxylon scoparium-and its entry into the plant was followed. Water was sprayed onto the soil only, or on the leaves/stems only (with soil covered to prevent water entry via root uptake). Thereafter, the isotopic composition of water in the roots and stems were measured at various time points. The results show that each plant species used the dew water to a different extent, and we obtained evidence of foliar uptake capacity of dew water that varied depending on the microenvironmental conditions. A. sieberi took up the greatest amount of dew water through both stems and roots, S. inermis took up dew water mainly from the roots, and H. scoparium showed the least dew capture overall.


Asunto(s)
Suelo , Agua , Transporte Biológico , Isótopos de Oxígeno/análisis , Hojas de la Planta/química , Agua/análisis
9.
Plant Direct ; 5(4): e00312, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33817545

RESUMEN

The study of transpiration, water, and nutrient uptake during abiotic stress in the root zone is hindered because of the hidden nature of the root zone. In this study, a modified aeroponic system was used to evaluate whole plant transpiration, nitrate and water uptake in the growth and development of tomato plants in response to salinity. Tomato seedlings were exposed to three levels of salinity (1.5, 4.5, and 9 dSm-1) and three levels of nitrate (1, 4, and 8 mM NO3) in a separate experiments conducted concurrently. Whole plant transpiration, water and nitrate uptake were estimated. Our study revealed that ~30 to 35 days after treatment (DAT), water uptake rate per plant increased from a common initial rate of about 0.05 to 1.1, 0.6, and 0.4 kg/day at 1.5, 4.5, and 9 dSm-1 respectively. The NO3 uptake rates in tomatoes grown in 1 and 4 mM NO3 were 5.5 and 22% respectively, of the uptake of tomatoes grown in 8 mM NO3. The estimation of nitrate uptake and lower sensitivity to salinity stress in the aeroponic showed the effectiveness and cost efficiency of the system in the cultivation of vegetables during abiotic stresses. The novelty of the system described is the continuous estimation of root and nutrient uptake by the whole plant at any given time.

10.
mSphere ; 5(4)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669465

RESUMEN

Plant parasitic nematodes such as Meloidogyne incognita have a complex life cycle, occurring sequentially in various niches of the root and rhizosphere. They are known to form a range of interactions with bacteria and other microorganisms that can affect their densities and virulence. High-throughput sequencing can reveal these interactions in high temporal and geographic resolutions, although thus far we have only scratched the surface. In this study, we have carried out a longitudinal sampling scheme, repeatedly collecting rhizosphere soil, roots, galls, and second-stage juveniles from 20 plants to provide a high-resolution view of bacterial succession in these niches, using 16S rRNA metabarcoding. Our findings indicate that a structured community develops in the root, in which gall communities diverge from root segments lacking a gall, and that this structure is maintained throughout the crop season. We describe the successional process leading toward this structure, which is driven by interactions with the nematode and later by an increase in bacteria often found in hypoxic and anaerobic environments. We present evidence that this structure may play a role in the nematode's chemotaxis toward uninfected root segments. Finally, we describe the J2 epibiotic microenvironment as ecologically deterministic, in part, due to the active bacterial attraction of second-stage juveniles.IMPORTANCE The study of high-resolution successional processes within tightly linked microniches is rare. Using the power and relatively low cost of metabarcoding, we describe the bacterial succession and community structure in roots infected with root-knot nematodes and in the nematodes themselves. We reveal separate successional processes in galls and adjacent non-gall root sections, which are driven by the nematode's life cycle and the progression of the crop season. With their relatively low genetic diversity, large geographic range, spatially complex life cycle, and the simplified agricultural ecosystems they occupy, root-knot nematodes can serve as a model organism for terrestrial holobiont ecology. This perspective can improve our understanding of the temporal and spatial aspects of biological control efficacy.


Asunto(s)
Bacterias/clasificación , Interacciones Microbiota-Huesped , Microbiota , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Tylenchoidea/microbiología , Animales , Bacterias/metabolismo , Código de Barras del ADN Taxonómico , Variación Genética , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Suelo , Microbiología del Suelo , Tylenchoidea/fisiología
11.
J Sci Food Agric ; 100(12): 4592-4600, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32419154

RESUMEN

BACKGROUND: Fertigation is a rare and an expensive method of fertilizer application to cassava, and hence there is a need to optimize its efficiency for profitability. This study's objective was to optimize root yield of cassava through fertigation using a logistic model. RESULTS: The field treatments were six fertigation concentrations against three cassava varieties, selected according to their maturity period. The logistic model predicted 52%, 116% and 281% benefit of fertigation for the varieties Mweru, Kampolombo and Nalumino, respectively. Furthermore, only half of the amount of fertilizer applied for Mweru was required to achieve twice the root yield of Kampolombo. During the experiment, an unknown importance of atmospheric temperature to cassava and its relationship to fertigation was observed. An elevation of 3.7 °C in atmospheric temperature led to 226%, 364% and 265% increase in root yield of Mweru, Kampolombo and Nalumino, respectively. Conversely, shoot biomass and root yield declined when the average atmospheric temperatures dropped by 3.6 °C. However, the cold temperatures affected the short-growth-duration (Mweru) and medium-growth-duration (Kampolombo) varieties earlier, 22 days after the drop, than the long-growth-duration variety (Nalumino) - 50 days after the drop. CONCLUSION: Fertigation induced resilience of the shoot biomass production to cold which was most pronounced in the root yield of Mweru in response to the highest fertigation concentration. Thus, while fertigation improved cassava's resilience to cold, it only did so effectively for short-growth-duration variety, Mweru. Also, enhanced performance of cassava under increased atmospheric temperature indicated its importance as a climate-smart crop. © 2020 Society of Chemical Industry.


Asunto(s)
Riego Agrícola/métodos , Fertilizantes/análisis , Manihot/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Manihot/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Suelo/química , Temperatura , Agua/análisis , Agua/metabolismo
12.
Physiol Plant ; 170(1): 60-74, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32303105

RESUMEN

Plants optimize water use and carbon assimilation via transient regulation of stomata resistance and by limiting hydraulic conductivity in a long-term response of xylem anatomy. We postulated that without effective hydraulic regulation plants would permanently restrain water loss and photosynthetic productivity under salt stress conditions. We compared wild-type tomatoes to a transgenic type (TT) with impaired stomatal control. Gas exchange activity, biomass, starch content, leaf area and root traits, mineral composition and main stems xylem anatomy and hydraulic conductivity were analyzed in plants exposed to salinities of 1 and 4 dS m-1 over 60 days. As the xylem cannot easily readjust to different environmental conditions, shifts in its anatomy and the permanent effect on plant hydraulic conductivity kept transpiration at lower levels under unstressed conditions and maintained it under salt-stress, while sustaining higher but inefficient assimilation rates, leading to starch accumulation and decreased plant biomass, leaf and root area and root length. Narrow conduits in unstressed TT plants were related to permanent restrain of hydraulic conductivity and plant transpiration. Under salinity, TT plants followed the atmospheric water demand, sustained similar transpiration rate from unstressed to salt-stressed conditions and possibly maintained hydraulic integrity, due to likely impaired hydraulic regulation, wider conduits and higher hydraulic conductivity. The accumulation of salts and starch in the TT plants was a strong evidence of salinity tolerance via osmotic regulation, also thought to help to maintain the assimilation rates and transpiration flux under salinity, although it was not translated into higher growth.


Asunto(s)
Estomas de Plantas , Salinidad , Hojas de la Planta , Raíces de Plantas , Transpiración de Plantas , Agua , Xilema
13.
Physiol Plant ; 169(2): 169-178, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31837027

RESUMEN

The linkage between K and the development of storage roots in root crops is partially understood, hence this experiment determined some of the mechanisms involved in cassava. The effects of 10, 40, 70, 100, 150 and 200 mg K l-1 fertigation on photosynthetic attributes, soluble carbohydrates, starch, metabolites, growth and yield were studied in a greenhouse. Storage root yield, number of storage roots, stomatal conductance and net photosynthesis reached maximum at 150 mg K l-1 . However, soluble carbohydrates and starch in the leaves significantly declined with an increasing concentration of K solution, similarly to the trend of glycerol in the leaves. Conversely, malic acid, citric acid and propionic acid gradually increased reaching maximum at 150, 150 and 70 mg K l-1 respectively. Combined, these results suggest that sugars were transported from the leaves to a stronger sink - the bulking storage roots. This and the increase of intermediate metabolites of tricarboxylic acid cycle provided the energy required for the bulking process and the development of the storage roots. Although the measured parameters indirectly link K to storage root development, they nonetheless form a basis for studies on direct interactions.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Manihot/metabolismo , Fotosíntesis , Raíces de Plantas/metabolismo , Potasio/metabolismo , Hojas de la Planta , Almidón/análisis
14.
Front Plant Sci ; 10: 1041, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572405

RESUMEN

Cassava (M. esculenta Crantz), feeding countless people and attracting markets worldwide, is a model for traditional crops that need physiology-based fertigation (fertilization through irrigation) standards in intensive cultivation. Hence, we studied the effects of 10 to 200 mg L-1 nitrogen (N) fertigation on growth and yields of cassava and targeted alterations in their photosynthetic, transpiration, and carbohydrate management. We found that increasing irrigation N from 10 to 70 mg L-1 increased cassava's photosynthesis and transpiration but supported only the canopy's growth. At 100 mg N L-1 cassava reached a threshold of sugar in leaves (∼47 mg g-1), began to accumulate starch and supported higher yields. Yet, at 200 mg N L-1, the canopy became too demanding and plants had to restrain transpiration, reduce photosynthesis, decrease carbohydrates, and finally lower yields. We concluded that the phases of cassava response to nitrogen are: 1) growth that does not support yields at low N, 2) productive N application, and 3) excessive use of N. Yet traditional leaf mineral analyses fail to exhibit these responses, and therefore we propose a simple and inexpensive carbohydrate measurement to guide a precise use of N.

15.
Planta ; 250(5): 1423-1432, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31290031

RESUMEN

MAIN CONCLUSION: Nitrogen and CO2 supply interactively regulate whole plant nitrogen partitioning and root anatomical and morphological development in tomato plants. Nitrogen (N) and carbon (C) are the key elements in plant growth and constitute the majority of plant dry matter. Growing at CO2 enrichment has the potential to stimulate the growth of C3 plants, however, growth is often limited by N availability. Thus, the interactive effects of CO2 under different N fertilization rates can affect growth, acclimation to elevated CO2, and yield. However, the majority of research in this field has focused on shoot traits, while neglecting plants' hidden half-the roots. We hypothesize that elevated CO2 and low N effects on transpiration will interactively affect root vascular development and plant N partitioning. Here we studied the effects of elevated CO2 and N concentrations on greenhouse-grown tomato plants, a C3 crop. Our main objective was to determine in what manner the N fertilization rate and elevated CO2 affected root development and nitrogen partitioning among plant organs. Our results indicate that N interacting with the CO2 level affects the development of the root system in terms of the length, anatomy, and partitioning of the N concentration between the roots and shoot. Both CO2 and N concentrations were found to affect xylem size in an opposite manner, elevated CO2 found to repressed, whereas ample N stimulated xylem development. We found that under limiting N and eCO2, the N% increase in the root, while it decreased in the shoot. Under eCO2, the root system size increased with a coordinated decrease in root xylem area. We suggest that tomato root response to elevated CO2 depends on N fertilization rates, and that a decrease in xylem size is a possible underlying response that limits nitrogen allocation from the root into the shoot. Additionally, the greater abundance of root amino acids suggests increased root nitrogen metabolism at eCO2 conditions with ample N.


Asunto(s)
Aclimatación , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Solanum lycopersicum/fisiología , Transporte Biológico , Carbono/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/crecimiento & desarrollo , Fotosíntesis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Transpiración de Plantas , Xilema/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/fisiología
16.
Front Plant Sci ; 10: 688, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178888

RESUMEN

Leaves of the spiny winter annual Silybum marianum express white patches (variegation) that can cover significant surface areas, the outcome of air spaces formed between the epidermis and the green chlorenchyma. We asked: (1) what characterizes the white patches in S. marianum and what differs them from green patches? (2) Do white patches differ from green patches in photosynthetic efficiency under lower temperatures? We predicted that the air spaces in white patches have physiological benefits, elevating photosynthetic rates under low temperatures. To test our hypotheses we used both a variegated wild type and entirely green mutants. We grew the plants under moderate temperatures (20°C/10°C d/n) and compared them to plants grown under lower temperatures (15°C/5°C d/n). The developed plants were exposed to different temperatures for 1 h and their photosynthetic activity was measured. In addition, we compared in green vs. white patches, the reflectance spectra, patch structure, chlorophyll and dehydrin content, stomatal structure, plant growth, and leaf temperature. White patches were not significantly different from green patches in their biochemistry and photosynthesis. However, under lower temperatures, variegated wild-type leaves were significantly warmer than all-green mutants - possible explanations for that are discussed These findings support our hypothesis, that white variegation of S. marianum leaves has a physiological role, elevating leaf temperature during cold winter days.

17.
Front Plant Sci ; 10: 405, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024583

RESUMEN

While a severe decrease in phosphorus (P) availability is already taking place in a large number of ecosystems, drought and nitrogen (N) deposition will likely further decrease the availability of P under global change. Plants have developed physiological strategies to cope with decreasing P resources, but it is unclear how these strategies respond to elevated N deposition and summer droughts. We investigated the influence of N and P availability and soil drought on P uptake (H3 33PO4 feeding experiment) and use efficiencies in young Quercus calliprinos Webb. trees. We hypothesized that (H1) the expected increases in soil N:P ratios will increase the efficiencies of P uptake and use of oak saplings but will decrease the efficiencies of N uptake and use, whereas (H2) drought will affect P uptake efficiency more than N uptake efficiency. In confirmation of (H1) we found that a sharp increase of the soil N:P ratio from 4 to 42 g g-1 significantly increased the instantaneous 33P uptake efficiency (33PUptakeE) by five-fold and long-term P uptake efficiency (PUptakeE) by six-fold, while it decreased N uptake efficiency (NUptakeE) and N use efficiency (NUE). In contradiction to (H1), P use efficiency (PUE) did not respond to the simulated extended gradient of soil N:P ratios but remained relatively constant. (H2) was only partially confirmed as soil drought reduced PUptakeE by up to a fourth at high soil N:P ratios but had no significant effect on NUptakeE. As a consequence, increasing summer droughts may decrease the response of PUptakeE to increasing P limitation, which - in the absence of adjustments of the efficiency of P use - can aggravate growth reductions in this eastern Mediterranean tree species under global change.

18.
Physiol Plant ; 165(4): 755-767, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29786859

RESUMEN

Under natural conditions, plants are regularly exposed to combinations of stress factors. A common example is the conjunction between nitrogen (N) deficiency and excess light. The combined effect of stress factors is often ignored in studies using controlled conditions, possibly resulting in misleading conclusions. To address this issue, the present study examined the physiological behavior of Arabidopsis thaliana under the effect of varying nitrogen levels and light intensities. The joint influence of low N and excess light had an adverse effect on plant growth, chlorophyll and anthocyanin concentrations, photochemical capacity and the abundance of proteins involved in carbon assimilation and antioxidative metabolism. In contrast, no adverse physiological responses were observed for plants under either nitrogen limitation or high light (HL) intensity conditions (i.e. single stress). The underlying mechanisms for the increased growth in conditions of HL and sufficient nitrogen were a combination of chlorophyll accumulation and an increased number of proteins involved in C3 carbon assimilation, amino acids biosynthesis and chloroplast development. In contrast, combined stress conditions shifts plants from growth to survival by displaying anthocyanin accumulation and an increased number of proteins involved in catabolism of lipids and amino acids as energy substrates. Ultimately switching plants development from growth to survival. Our results suggest that an assessment of the physiological response to the combined effect of multiple stresses cannot be directly extrapolated from the physiological response to a single stress. Specifically, the synergistic interaction between N deficiency and saturating light in Arabidopsis plants could not have been modeled via only one of the stress factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Luz , Nitrógeno/metabolismo , Antocianinas/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Estrés Fisiológico/efectos de la radiación
19.
Funct Plant Biol ; 46(4): 339-349, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-32172743

RESUMEN

Low temperature is a prominent limiting factor for tropical originated crops production in temperate regions, particularly during cool-season production. The diverse response of two rootstocks (Canon-sensitive and S103-tolerant to low root-zone temperature) was studied when exposed to aeroponically different temperature regimes at the root zone: constant low temperature of 14°C low root-zone temperature (LRZT), transient exposure to LRZT of 27-14-27°C and control temperature of 27°C. Gas exchange, shoot dry mass, and root morphology were measured. Shifts in central and secondary metabolite levels in the leaves and roots were examined by gas chromatography-mass spectrometry (GC-MS). Low root-zone temperature inhibited photosynthesis and transpiration of both grafted bell pepper plants; however, self-grafted Canon physiology was impeded to a greater extent compared with Canon grafted onto rootstock S103. Rootstock S103 demonstrated higher sink potential contributing to milder reduction of photosynthesis and transpiration during stress compared with self-grafted Canon. This reduction of gas exchange led to a significant reduction of root maximum length and root dry mass in self-grafted Canon in response to the stress at 14°C compared with Canon grafted onto rootstock S103. In response to stress, GC-MS metabolite profiling showed enhance metabolism in both cultivars' leaves, as well as in the roots irrespective of the developmental stage of the plant. This evidence combined indicates enhance gas exchange and carbon assimilation when bell pepper is grafted on S103 under low root-zone temperature.


Asunto(s)
Capsicum , Frío , Fotosíntesis , Raíces de Plantas , Temperatura
20.
Plant Sci ; 272: 294-300, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29807602

RESUMEN

Ambient CO2 concentration is currently 400 µmol mol-1, and projections forecast an increase up to 970 µmol mol-1 by century's end. Elevated CO2 can stimulate C3 plant growth, whereas nitrogen is the main nutrient plants acquire from soils and often limits growth. Plants primarily obtain two nitrogen sources from the soil, ammonium (NH4+) and nitrate (NO3-). At elevated CO2 levels, plant growth and nitrogen metabolism is affected by the nitrogen source. Most research has focused on shoot traits, while neglecting the plants' hidden half, the root. We studied the effects of elevated CO2 and nitrogen source on hydroponically grown tomato plants, a C3 model and crop plant. Our main objective was to determine how the nitrogen source and elevated CO2 affect root development. Our results indicate they affect development in terms of the size and anatomy of different root orders. Specifically, root xylem development was found sensitive to the nitrogen source, whereas NO3--supplied plants displayed greater xylem development compared to their NH4+ counterparts, and also to a lesser extent, to elevated CO2, which we found inhibits this development. Additionally, elevated CO2 decreased root respiration in different root orders exclusively in plants supplied with NH4+as the sole nitrogen source.


Asunto(s)
Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Respiración de la Célula , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...