Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 268: 115729, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000304

RESUMEN

Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14ɑ-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.


Asunto(s)
Antifúngicos , Solanum lycopersicum , Antioxidantes/metabolismo , Redes y Vías Metabólicas , Triazoles/toxicidad
2.
Metabolites ; 13(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37755268

RESUMEN

Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA