Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 18(2): 650-663, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34871502

RESUMEN

Alchemical binding free energy (BFE) calculations offer an efficient and thermodynamically rigorous approach to in silico binding affinity predictions. As a result of decades of methodological improvements and recent advances in computer technology, alchemical BFE calculations are now widely used in drug discovery research. They help guide the prioritization of candidate drug molecules by predicting their binding affinities for a biomolecular target of interest (and potentially selectivity against undesirable antitargets). Statistical variance associated with such calculations, however, may undermine the reliability of their predictions, introducing uncertainty both in ranking candidate molecules and in benchmarking their predictive accuracy. Here, we present a computational method that substantially improves the statistical precision in BFE calculations for a set of ligands binding to a common receptor by dynamically allocating computational resources to different BFE calculations according to an optimality objective established in a previous work from our group and extended in this work. Our method, termed Network Binding Free Energy (NetBFE), performs adaptive BFE calculations in iterations, re-optimizing the allocations in each iteration based on the statistical variances estimated from previous iterations. Using examples of NetBFE calculations for protein binding of congeneric ligand series, we demonstrate that NetBFE approaches the optimal allocation in a small number (≤5) of iterations and that NetBFE reduces the statistical variance in the BFE estimates by approximately a factor of 2 when compared to a previously published and widely used allocation method at the same total computational cost.

2.
J Chem Theory Comput ; 17(12): 7366-7372, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34762421

RESUMEN

Molecular dynamics (MD) simulations of proteins are commonly used to sample from the Boltzmann distribution of conformational states, with wide-ranging applications spanning chemistry, biophysics, and drug discovery. However, MD can be inefficient at equilibrating water occupancy for buried cavities in proteins that are inaccessible to the surrounding solvent. Indeed, the time needed for water molecules to equilibrate between the bulk solvent and the binding site can be well beyond what is practical with standard MD, which typically ranges from hundreds of nanoseconds to a few microseconds. We recently introduced a hybrid Monte Carlo/MD (MC/MD) method, which speeds up the equilibration of water between buried cavities and the surrounding solvent, while sampling from the thermodynamically correct distribution of states. While the initial implementation of the MC functionality led to considerable slowing of the overall simulations, here we address this problem with a parallel MC algorithm implemented on graphical processing units. This results in speed-ups of 10-fold to 1000-fold over the original MC/MD algorithm, depending on the system and simulation parameters. The present method is available for use in the AMBER simulation software.

3.
J Chem Theory Comput ; 16(12): 7883-7894, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33206520

RESUMEN

Rigorous binding free energy methods in drug discovery are growing in popularity because of a combination of methodological advances, improvements in computer hardware, and workflow automation. These calculations typically use molecular dynamics (MD) to sample from the Boltzmann distribution of conformational states. However, when part or all of the binding sites is inaccessible to the bulk solvent, the time needed for water molecules to equilibrate between bulk solvent and the binding site can be well beyond what is practical with standard MD. This sampling limitation is problematic in relative binding free energy calculations, which compute the reversible work of converting ligand 1 to ligand 2 within the binding site. Thus, if ligand 1 is smaller and/or more polar than ligand 2, the perturbation may allow additional water molecules to occupy a region of the binding site. However, this change in hydration may not be captured by standard MD simulations and may therefore lead to errors in the computed free energy. We recently developed a hybrid Monte Carlo/MD (MC/MD) method, which speeds up the equilibration of water between bulk solvent and buried cavities, while sampling from the intended distribution of states. Here, we report on the use of this approach in the context of alchemical binding free energy calculations. We find that using MC/MD markedly improves the accuracy of the calculations and also reduces hysteresis between the forward and reverse perturbations, relative to matched calculations using only MD with or without the crystallographic water molecules. The present method is available for use in AMBER simulation software.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Termodinámica , Agua/química , Sitios de Unión , Ligandos , Estructura Molecular
4.
J Chem Inf Model ; 60(11): 5595-5623, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32936637

RESUMEN

Predicting protein-ligand binding affinities and the associated thermodynamics of biomolecular recognition is a primary objective of structure-based drug design. Alchemical free energy simulations offer a highly accurate and computationally efficient route to achieving this goal. While the AMBER molecular dynamics package has successfully been used for alchemical free energy simulations in academic research groups for decades, widespread impact in industrial drug discovery settings has been minimal because of the previous limitations within the AMBER alchemical code, coupled with challenges in system setup and postprocessing workflows. Through a close academia-industry collaboration we have addressed many of the previous limitations with an aim to improve accuracy, efficiency, and robustness of alchemical binding free energy simulations in industrial drug discovery applications. Here, we highlight some of the recent advances in AMBER20 with a focus on alchemical binding free energy (BFE) calculations, which are less computationally intensive than alternative binding free energy methods where full binding/unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we also describe the essential practical aspects associated with running relative alchemical BFE calculations, along with recommendations for best practices, highlighting the importance not only of the alchemical simulation code but also the auxiliary functionalities and expertise required to obtain accurate and reliable results. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative BFE simulations in AMBER20, with a focus on real-world drug discovery applications.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular , Entropía , Ligandos , Unión Proteica , Termodinámica
5.
J Chem Inf Model ; 60(11): 5301-5307, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32805108

RESUMEN

Harnessing the power of graphics processing units (GPUs) to accelerate molecular dynamics (MD) simulations in the context of free-energy calculations has been a longstanding effort toward the development of versatile, high-performance MD engines. We report a new GPU-based implementation in NAMD of free-energy perturbation (FEP), one of the oldest, most popular importance-sampling approaches for the determination of free-energy differences that underlie alchemical transformations. Compared to the CPU implementation available since 2001 in NAMD, our benchmarks indicate that the new implementation of FEP in traditional GPU code is about four times faster, without any noticeable loss of accuracy, thereby paving the way toward more affordable free-energy calculations on large biological objects. Moreover, we have extended this new FEP implementation to a code path highly optimized for a single-GPU node, which proves to be up to nearly 30 times faster than the CPU implementation. Through optimized GPU performance, the present developments provide the community with a cost-effective solution for conducting FEP calculations. The new FEP-enabled code has been released with NAMD 3.0.


Asunto(s)
Simulación de Dinámica Molecular , Entropía
6.
J Chem Phys ; 153(4): 044130, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752662

RESUMEN

NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.

7.
J Chem Theory Comput ; 16(9): 5512-5525, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32672455

RESUMEN

Progress in the development of GPU-accelerated free energy simulation software has enabled practical applications on complex biological systems and fueled efforts to develop more accurate and robust predictive methods. In particular, this work re-examines concerted (a.k.a., one-step or unified) alchemical transformations commonly used in the prediction of hydration and relative binding free energies (RBFEs). We first classify several known challenges in these calculations into three categories: endpoint catastrophes, particle collapse, and large gradient-jumps. While endpoint catastrophes have long been addressed using softcore potentials, the remaining two problems occur much more sporadically and can result in either numerical instability (i.e., complete failure of a simulation) or inconsistent estimation (i.e., stochastic convergence to an incorrect result). The particle collapse problem stems from an imbalance in short-range electrostatic and repulsive interactions and can, in principle, be solved by appropriately balancing the respective softcore parameters. However, the large gradient-jump problem itself arises from the sensitivity of the free energy to large values of the softcore parameters, as might be used in trying to solve the particle collapse issue. Often, no satisfactory compromise exists with the existing softcore potential form. As a framework for solving these problems, we developed a new family of smoothstep softcore (SSC) potentials motivated by an analysis of the derivatives along the alchemical path. The smoothstep polynomials generalize the monomial functions that are used in most implementations and provide an additional path-dependent smoothing parameter. The effectiveness of this approach is demonstrated on simple yet pathological cases that illustrate the three problems outlined. With appropriate parameter selection, we find that a second-order SSC(2) potential does at least as well as the conventional approach and provides vast improvement in terms of consistency across all cases. Last, we compare the concerted SSC(2) approach against the gold-standard stepwise (a.k.a., decoupled or multistep) scheme over a large set of RBFE calculations as might be encountered in drug discovery.

8.
J Chem Inf Model ; 60(9): 4153-4169, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32539386

RESUMEN

Virtual high throughput screening (vHTS) in drug discovery is a powerful approach to identify hits: when applied successfully, it can be much faster and cheaper than experimental high-throughput screening approaches. However, mainstream vHTS tools have significant limitations: ligand-based methods depend on knowledge of existing chemical matter, while structure-based tools such as docking involve significant approximations that limit their accuracy. Recent advances in scientific methods coupled with dramatic speedups in computational processing with GPUs make this an opportune time to consider the role of more rigorous methods that could improve the predictive power of vHTS workflows. In this Perspective, we assert that alchemical binding free energy methods using all-atom molecular dynamics simulations have matured to the point where they can be applied in virtual screening campaigns as a final scoring stage to prioritize the top molecules for experimental testing. Specifically, we propose that alchemical absolute binding free energy (ABFE) calculations offer the most direct and computationally efficient approach within a rigorous statistical thermodynamic framework for computing binding energies of diverse molecules, as is required for virtual screening. ABFE calculations are particularly attractive for drug discovery at this point in time, where the confluence of large-scale genomics data and insights from chemical biology have unveiled a large number of promising disease targets for which no small molecule binders are known, precluding ligand-based approaches, and where traditional docking approaches have foundered to find progressible chemical matter.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular , Entropía , Ligandos , Unión Proteica , Termodinámica
9.
J Chem Phys ; 151(3): 034105, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31325916

RESUMEN

In practical free energy estimation, the bias is often neglected once it has been shown to vanish in the large-sample limit. Yet finite-sample bias always exists and ought to be considered in any rigorous study. This work develops a metric for bias in a broad class of free energy "bridge estimators" (e.g., Bennett's method). The framework complements existing variance estimation methods and provides a means for comparing systematic and statistical errors. Examples show that, contrary to what is often assumed, the bias can be quite substantial when the sample size is modest.

11.
J Chem Phys ; 149(7): 072315, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134700

RESUMEN

Expanded ensemble simulation is a powerful technique for enhancing sampling over a range of thermodynamic parameters. However, although the premise is relatively simple, running successful simulations in practice still presents something of an ad hoc challenge. Three main difficulties exist: (1) the selection of the thermodynamic states, (2) the selection of the sampling weights, and (3) efficient sampling of the expanded parameter space. Here we consider these problems in the context of a pairwise linear response approach to the work fluctuation theorem. The approach offers comprehensive tactics for addressing the three difficulties and can be used as either an alternative or a complement to replica exchange simulations. Importantly, the results are trivially implemented for multi-dimensional parameter spaces and they recover results from the literature aimed at the special cases of simulated/parallel tempering and replica exchange umbrella sampling. Illustrative examples are shown using the NAMD simulation engine.

12.
J Chem Phys ; 148(1): 014101, 2018 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-29306299

RESUMEN

Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.

13.
J Chem Theory Comput ; 13(12): 5933-5944, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29111720

RESUMEN

An increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementation of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Concentración de Iones de Hidrógeno , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nucleasa Microcócica/química , Nucleasa Microcócica/metabolismo , Método de Montecarlo , Proteínas/metabolismo , Solventes/química , Termodinámica
14.
J Chem Theory Comput ; 13(9): 3975-3984, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28768099

RESUMEN

The computational efficiency of approximate quantum mechanical methods allows their use for the construction of multidimensional reaction free energy profiles. It has recently been demonstrated that quantum models based on the neglect of diatomic differential overlap (NNDO) approximation have difficulty modeling deoxyribose and ribose sugar ring puckers and thus limit their predictive value in the study of RNA and DNA systems. A method has been introduced in our previous work to improve the description of the sugar puckering conformational landscape that uses a multidimensional B-spline correction map (BMAP correction) for systems involving intrinsically coupled torsion angles. This method greatly improved the adiabatic potential energy surface profiles of DNA and RNA sugar rings relative to high-level ab initio methods even for highly problematic NDDO-based models. In the present work, a BMAP correction is developed, implemented, and tested in molecular dynamics simulations using the AM1/d-PhoT semiempirical Hamiltonian for biological phosphoryl transfer reactions. Results are presented for gas-phase adiabatic potential energy surfaces of RNA transesterification model reactions and condensed-phase QM/MM free energy surfaces for nonenzymatic and RNase A-catalyzed transesterification reactions. The results show that the BMAP correction is stable, efficient, and leads to improvement in both the potential energy and free energy profiles for the reactions studied, as compared with ab initio and experimental reference data. Exploration of the effect of the size of the quantum mechanical region indicates the best agreement with experimental reaction barriers occurs when the full CpA dinucleotide substrate is treated quantum mechanically with the sugar pucker correction.

15.
J Chem Phys ; 145(13): 134109, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27782441

RESUMEN

Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.

16.
ACS Catal ; 6(3): 1853-1869, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27774349

RESUMEN

RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.

17.
J Chem Theory Comput ; 11(2): 373-7, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26580900

RESUMEN

Replica exchange molecular dynamics has emerged as a powerful tool for efficiently sampling free energy landscapes for conformational and chemical transitions. However, daunting challenges remain in efficiently getting such simulations to scale to the very large number of replicas required to address problems in state spaces beyond two dimensions. The development of enabling technology to carry out such simulations is in its infancy, and thus it remains an open question as to which applications demand extension into higher dimensions. In the present work, we explore this problem space by applying asynchronous Hamiltonian replica exchange molecular dynamics with a combined quantum mechanical/molecular mechanical potential to explore the conformational space for a simple ribonucleoside. This is done using a newly developed software framework capable of executing >3,000 replicas with only enough resources to run 2,000 simultaneously. This may not be possible with traditional synchronous replica exchange approaches. Our results demonstrate 1.) the necessity of high dimensional sampling simulations for biological systems, even as simple as a single ribonucleoside, and 2.) the utility of asynchronous exchange protocols in managing simultaneous resource requirements expected in high dimensional sampling simulations. It is expected that more complicated systems will only increase in computational demand and complexity, and thus the reported asynchronous approach may be increasingly beneficial in order to make such applications available to a broad range of computational scientists.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Ribonucleósidos/química , Uracilo/química , Conformación Molecular
18.
RNA ; 21(9): 1566-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26170378

RESUMEN

The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.


Asunto(s)
Virus de la Hepatitis Delta/enzimología , Magnesio/metabolismo , ARN Catalítico/química , ARN Viral/química , Catálisis , Dominio Catalítico , Modelos Químicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Fosforilación , Teoría Cuántica , ARN Catalítico/metabolismo , ARN Viral/metabolismo
19.
Methods Enzymol ; 553: 335-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25726472

RESUMEN

RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multidimensional "problem space" of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues, and bond breaking/forming in the chemical steps of the reaction. The goal of this chapter is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics simulations, reference interaction site model calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics, and quantum mechanical/molecular mechanical simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme and RNase A.


Asunto(s)
Enzimas/química , Modelos Moleculares , ARN/química , ARN/metabolismo , Catálisis , Enzimas/metabolismo , Concentración de Iones de Hidrógeno , Iones/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Teoría Cuántica , ARN Catalítico/química , ARN Catalítico/metabolismo , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo
20.
J Chem Theory Comput ; 10(1): 24-34, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24505217

RESUMEN

The variational free energy profile (vFEP) method is extended to two dimensions and tested with molecular simulation applications. The proposed 2D-vFEP approach effectively addresses the two major obstacles to constructing free energy profiles from simulation data using traditional methods: the need for overlap in the re-weighting procedure and the problem of data representation. This is especially evident as these problems are shown to be more severe in two dimensions. The vFEP method is demonstrated to be highly robust and able to provide stable, analytic free energy profiles with only a paucity of sampled data. The analytic profiles can be analyzed with conventional search methods to easily identify stationary points (e.g. minima and first-order saddle points) as well as the pathways that connect these points. These "roadmaps" through the free energy surface are useful not only as a post-processing tool to characterize mechanisms, but can also serve as a basis from which to direct more focused "on-the-fly" sampling or adaptive force biasing. Test cases demonstrate that 2D-vFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct stable, converged analytic free energy profiles. In a classic test case, the two dimensional free energy profile of the backbone torsion angles of alanine dipeptide, 2D-vFEP needs less than 1% of the original data set to reach a sampling accuracy of 0.5 kcal/mol in free energy shifts between windows. A new software tool for performing one and two dimensional vFEP calculations is herein described and made publicly available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...