Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Heliyon ; 10(12): e32803, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975163

RESUMEN

This review examines the correlation between plant-based diets and athletic performance, with a specific emphasis on the vital aspect of optimizing micronutrients for athletes. In light of the increasing prevalence of plant-based nutrition among athletes due to its perceived advantages in terms of health, ethics, and the environment, this study investigates the ability of these diets to satisfy the demanding nutritional requirements essential for achieving optimal performance and facilitating recovery. The article emphasizes the significance of essential micronutrients such as iron, vitamin B12, calcium, vitamin D, zinc, and omega-3 fatty acids and also addressing the challenges with their absorption and bioavailability from plant sources. The review consolidates existing scientific knowledge to propose strategies for improving micronutrient consumption, comparing the effects of supplements against whole foods, and highlighting the significance of enhancing bioavailability. The proposal supports the implementation of personalized meal planning, with the assistance of sports nutritionists or dietitians, and is substantiated by case studies showcasing the success of plant-based athletes. Future research directions examine the long-term effects of plant-based diets on micronutrient status and athletic performance, as well as developing nutritional trends and technology. The review concludes that plant-based diets can meet athletes' nutritional demands and improve peak performance while aligning with personal and ethical values with strategic planning and professional guidance. This study intends to help athletes, coaches, and nutritionists understand plant-based nutrition for enhanced athletic performance.

2.
Curr Issues Mol Biol ; 46(5): 4337-4357, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38785532

RESUMEN

The technical difficulty of separating extracellular vesicles (EVs) from plasma proteins in human blood presents a significant hurdle in EV research, particularly during nano ultra-high-performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) analysis, where detecting "vesicular" proteins among abundant plasma proteins is challenging. Standardisation is a pressing issue in EV research, prompting collaborative global efforts to address it. While the MISEV guidelines offer valuable recommendations, unanswered questions remain, particularly regarding sample storage. We compared size exclusion chromatography (SEC) columns with pore sizes of 35 nm and 70 nm to identify fractions with minimal contaminating proteins and the highest concentration of small EVs (sEVs). Following column selection, we explored potential differences in the quality and quantity of sEVs isolated from platelet-free plasma (PFP) after long-term storage at -80 °C (>2.5 years) compared to freshly drawn blood. Our methodologically rigorous study indicates that prolonged storage, under correct storage and processing conditions, does not compromise sEV quality. Both columns effectively isolated vesicles, with the 70 nm column exhibiting a higher abundance of "vesicular" proteins. We propose a relatively rapid and moderately efficient protocol for obtaining a comparatively pure sEV fraction from plasma, facilitating sEV processing in clinical trials.

3.
J Sport Health Sci ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719184

RESUMEN

The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.

4.
Neurochem Res ; 49(7): 1643-1654, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782838

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ejercicio Físico , Ferroptosis , Factor 2 Relacionado con NF-E2 , Enfermedad de Parkinson , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ferroptosis/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Animales , Ejercicio Físico/fisiología , Transducción de Señal/fisiología
5.
Antioxidants (Basel) ; 13(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38671884

RESUMEN

The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.

6.
Aging Cell ; 23(4): e14101, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38414315

RESUMEN

Epigenetic clocks can measure aging and predict the incidence of diseases and mortality. Higher levels of physical fitness are associated with a slower aging process and a healthier lifespan. Microbiome alterations occur in various diseases and during the aging process, yet their relation to epigenetic clocks is not explored. To fill this gap, we collected metagenomic (from stool), epigenetic (from blood), and exercise-related data from physically active individuals and, by applying epigenetic clocks, we examined the relationship between gut flora, blood-based epigenetic age acceleration, and physical fitness. We revealed that an increased entropy in the gut microbiome of physically active middle-aged/old individuals is associated with accelerated epigenetic aging, decreased fitness, or impaired health status. We also observed that a slower epigenetic aging and higher fitness level can be linked to altered abundance of some bacterial species often linked to anti-inflammatory effects. Overall our data suggest that alterations in the microbiome can be associated with epigenetic age acceleration and physical fitness.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Persona de Mediana Edad , Microbioma Gastrointestinal/genética , Aptitud Física , Microbiota/genética , Aceleración , Envejecimiento/genética , Epigénesis Genética , Metilación de ADN
7.
J Physiol Biochem ; 80(2): 329-335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38261146

RESUMEN

The role of Peroxisome proliferator-activated receptor-gamma coactivator alpha (PGC-1α) in fat metabolism is not well known. In this study, we compared the mechanisms of muscle-specific PGC-1α overexpression and exercise-related adaptation-dependent fat metabolism. PGC-1α trained (PGC-1α Ex) and wild-trained (wt-ex) mice were trained for 10 weeks, five times a week at 30 min per day with 60 percent of their maximal running capacity. The PGC-1α overexpressed animals exhibited higher levels of Fibronectin type III domain-containing protein 5 (FNDC5), 5' adenosine monophosphate-activated protein kinase alpha (AMPK-α), the mammalian target of rapamycin (mTOR), Sirtuin 1 (SIRT1), Lon protease homolog 1 (LONP1), citrate synthase (CS), succinate dehydrogenase complex flavoprotein subunit A (SDHA), Mitofusin-1 (Mfn1), endothelial nitric oxide synthase (eNOS), Hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), G protein-coupled receptor 41 (GPR41), and Phosphatidylcholine Cytidylyltransferase 2 (PCYT2), and lower levels of Sirtuin 3 (SIRT3) compared to wild-type animals. Exercise training increased the protein content levels of SIRT1, HSL, and ATGL in both the wt-ex and PGC-1α trained groups. PGC-1α has a complex role in cellular signaling, including the upregulation of lipid metabolism-associated proteins. Our data reveals that although exercise training mimics the effects of PGC-1α overexpression, it incorporates some PGC-1α-independent adaptive mechanisms in fat uptake and cell signaling.


Asunto(s)
Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Adaptación Fisiológica , Proteínas Quinasas Activadas por AMP/metabolismo , Fibronectinas , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Transducción de Señal , Sirtuina 1/metabolismo , Sirtuina 1/genética
8.
Heliyon ; 10(2): e24421, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293399

RESUMEN

Extensive research has confirmed numerous advantages of exercise for promoting brain health. More recent studies have proposed the potential benefits of lactate, the by-product of exercise, in various aspects of brain function and disorders. However, there remains a gap in understanding the effects of lactate dosage and its impact on aged rodents. The present study first examined the long-term effects of three different doses of lactate intervention (2000 mg/kg, 1000 mg/kg, and 500 mg/kg) and high-intensity interval training (HIIT) on aging mice (20-22 months) as the 1st experiment. Subsequently, in the 2nd experiment, we investigated the long-term effects of 500 mg/kg lactate intervention and HIIT on brain neuroplasticity in aged mice (25-27 months). The results of the 1st experiment demonstrated that both HIIT and different doses of lactate intervention (500 mg/kg and 2000 mg/kg) positively impacted the neuroplasticity biomarker VEGF in the hippocampus of aging mice. Subsequently, the 2nd experiment revealed that long-term HIIT significantly improved the performance of mice in open-field, novel object recognition, and passive avoidance tests. However, lactate intervention did not significantly affect these behavioral tests. Moreover, compared to the control group, both HIIT and lactate intervention positively influenced the angiogenesis signaling pathway (p/t-AKT/ENOS/VEGF), mitochondrial biomarker (SDHA), and metabolic protein (p/t-CREB, p/t-HSL, and LDH) in the hippocampus of aged mice. Notably, only lactate intervention significantly elevated the BDNF (PGC-1α, SIRT1, and BDNF) signaling pathway and metabolic content (lactate and pyruvate). In the end, long-term HIIT and lactate intervention failed to change the protein expression of p/t-MTOR, iNOS, nNOS, HIF-1α, SYNAPSIN, SIRT3, NAMPT, CS, FNDC5 and Pan Lactic aid-Lysine in the hippocampus of aged mice. In summary, the present study proved that long-term HIIT and lactate treatment have positive effects on the brain functions of aged mice, suggesting the potential usage of lactate as a therapeutic strategy in neurodegenerative diseases in the elderly population.

9.
Aging Cell ; 23(1): e13960, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37584423

RESUMEN

DNA methylation-based age estimators (DNAm ageing clocks) are currently one of the most promising biomarkers for predicting biological age. However, the relationships between cardiorespiratory fitness (CRF), measured directly by expiratory gas analysis, and DNAm ageing clocks are largely unknown. We investigated the relationships between CRF and the age-adjusted value from the residuals of the regression of DNAm ageing clock to chronological age (DNAmAgeAcceleration: DNAmAgeAccel) and attempted to determine the relative contribution of CRF to DNAmAgeAccel in the presence of other lifestyle factors. DNA samples from 144 Japanese men aged 65-72 years were used to appraise first- (i.e., DNAmHorvath and DNAmHannum) and second- (i.e., DNAmPhenoAge, DNAmGrimAge, and DNAmFitAge) generation DNAm ageing clocks. Various surveys and measurements were conducted, including physical fitness, body composition, blood biochemical parameters, nutrient intake, smoking, alcohol consumption, disease status, sleep status, and chronotype. Both oxygen uptake at ventilatory threshold (VO2 /kg at VT) and peak oxygen uptake (VO2 /kg at Peak) showed a significant negative correlation with GrimAgeAccel, even after adjustments for chronological age and smoking and drinking status. Notably, VO2 /kg at VT and VO2 /kg at Peak above the reference value were also associated with delayed GrimAgeAccel. Multiple regression analysis showed that calf circumference, serum triglyceride, carbohydrate intake, and smoking status, rather than CRF, contributed more to GrimAgeAccel and FitAgeAccel. In conclusion, although the contribution of CRF to GrimAgeAccel and FitAgeAccel is relatively low compared to lifestyle-related factors such as smoking, the results suggest that the maintenance of CRF is associated with delayed biological ageing in older men.


Asunto(s)
Capacidad Cardiovascular , Masculino , Humanos , Anciano , Metilación de ADN/genética , Envejecimiento/genética , Estilo de Vida , Oxígeno
10.
Free Radic Biol Med ; 210: 65-74, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977212

RESUMEN

Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Especies Reactivas de Oxígeno/metabolismo , Ejercicio Físico , ADN/metabolismo , Guanina/metabolismo
11.
BMC Neurosci ; 24(1): 68, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110905

RESUMEN

BACKGROUND: It has been suggested that exercise training and postbiotic supplement could decelerate the progress of functional and biochemical deterioration in double transgenic mice overexpresses mutated forms of the genes for human amyloid precursor protein (APPsw) and presenilin 1 (m146L) (APP/PS1TG). Our earlier published data indicated that the mice performed better than controls on the Morris Maze Test parallel with decreased occurrence of amyloid-ß plaques in the hippocampus. We investigated the neuroprotective and therapeutic effects of high-intensity training and postbiotic supplementation. METHODS: Thirty-two adult APP/PS1TG mice were randomly divided into four groups: (1) control, (2) high-intensity training (3) postbiotic, (4) combined (training and postbiotic) treatment for 20 weeks. In this study, the whole hemibrain without hippocampus was used to find molecular traits explaining improved brain function. We applied qualitative RT-PCR for gene expression, Western blot for protein level, and Zymography for LONP1 activity. Disaggregation analysis of Aß-40 was performed in the presence of Lactobacillus acidophilus and Bifidobacterium longum lysate. RESULTS: We found that exercise training decreased Alzheimer's Disease (AD)-related gene expression (NF-kB) that was not affected by postbiotic treatment. The preparation used for postbiotic treatment is composed of tyndallized Bifidobacterium longum and Lactobacillus acidophilus. Both of the postbiotics effectively disaggregated amyloid-ß/Aß-40 aggregates by chelating Zn2+ and Cu2+ ions. The postbiotic treatment decreased endogenous human APPTG protein expression and mouse APP gene expression in the hemibrains. In addition, the postbiotic treatment elevated mitochondrial LONP1 activity as well. CONCLUSION: Our findings revealed distinct mechanisms behind improved memory performance in the whole brain: while exercise training modulates NF-kB signaling pathway regulating immune response until postbiotic diminishes APP gene expression, disaggregates pre-existing amyloid-ß plaques and activates mitochondrial protein quality control in the region of brain out of hippocampus. Using the above treatments complements and efficiently slows down the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Masculino , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , FN-kappa B/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Placa Amiloide/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes/metabolismo
12.
Biogerontology ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882909

RESUMEN

Professor Sataro Goto is one of the pioneers of biological aging research in Japan. He is renowned for his work on the role of protein errors and modifications, the accumulation of abnormal proteins due to reduced protein turnover, and the modulation of aging and lifespan by adult-onset dietary restriction and regular exercise. Professor Goto is a remarkably intelligent, visionary, empathetic, humble, and wise man, who kindly agreed to this interview that I (Zsolt Radak) made with him during one of my frequent visits to his labs, in February 2023.

13.
Front Physiol ; 14: 1182833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664426

RESUMEN

Background: During competition and training, exercises involving the lungs may occur throughout the sport, and fatigue is a major injury risk factor in sport, before and after fatigue studies of changes in the lungs are relatively sparse. This study is to investigate into how fatigue affects the lower limb's biomechanics during a forward lunge. Methods: 15 healthy young men participate in this study before and after to exposed to a fatigue protocol then we tested the forward lunge to obtain kinematic, kinetic changing during the task, and to estimate the corresponding muscles' strength changes in the hip, knee, and ankle joints. The measurement data before and after the fatigue protocol were compared with paired samples t-test. Results: In the sagittal and horizontal planes of the hip and knee joints, in both, the peak angles and joint range of motion (ROM) increased, whereas the moments in the sagittal plane of the knee joint smaller. The ankle joint's maximum angle smaller after fatigue. Peak vertical ground reaction force (vGRF) and peak contact both significantly smaller after completing the fatigue protocol and the quadriceps mean and maximum muscular strength significantly increased. Conclusion: After completing a fatigue protocol during lunge the hip, knee, and ankle joints become less stable in both sagittal and horizontal planes, hip and knee range of motion becomes greater. The quadriceps muscles are more susceptible to fatigue and reduced muscle force. Trainers should focus more on the thigh muscle groups.

14.
Front Physiol ; 14: 1173636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664431

RESUMEN

The interaction between the gut and brain is a great puzzle since it is mediated by very complex mechanisms. Therefore, the possible interactions of the brain-exercise-intestine-microbiome axis were investigated in a control (C, N = 6) and voluntarily exercised (VE, N = 8) middle-aged rats. The endurance capacity was assessed by VO2max on the treadmill, spatial memory by the Morris maze test, gastrointestinal motility by EMG, the microbiome by 16S RNA gene amplicon sequencing, caveolae by electron microscopy, and biochemical assays were used to measure protein levels and production of reactive oxygen species (ROS). Eight weeks of voluntary running increased VO2max, and spatial memory was assessed by the Morris maze test but did not significantly change the motility of the gastrointestinal tract or production of ROS in the intestine. The protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) protein levels significantly increased in the intestine, while peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NFR1), SIRT1, SIRT3, nicotinamide phosphoribosyl transferase (NAMPT), and nuclear factor κB (NF-κB) did not change. On the other hand, voluntary exercise increased the number of caveolae in the smooth muscles of the intestine and relative abundance of Bifidobacteria in the microbiome, which correlated with the Akt levels in the intestine. Voluntary exercise has systemic effects and the relationship between intestinal Akt and the microbiome of the gastrointestinal tract could be an important adaptive response.

15.
Front Cardiovasc Med ; 10: 1152240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771672

RESUMEN

Objective: This study aims to establish hypertension risk nomograms for Chinese male and female adults, respectively. Method: A series of questionnaire surveys, physical assessments, and biochemical indicator tests were performed on 18,367 adult participants in China. The optimization of variable selection was conducted by running cyclic coordinate descent with 10-fold cross-validation through the least absolute shrinkage and selection operator (LASSO) regression. The nomograms were built by including the predictors selected through multivariable logistic regression. Calibration plots, receiver operating characteristic curves (ROC), decision curve analysis (DCA), clinical impact curves (CIC), and net reduction curve plots (NRC) were used to validate the models. Results: Out of a total of 18 variables, 5 predictors-namely age, body mass index, waistline, hipline, and resting heart rate-were identified for the hypertension risk predictive model for men with an area under the ROC of 0.693 in the training set and 0.707 in the validation set. Seven predictors-namely age, body mass index, body weight, cardiovascular disease history, waistline, resting heart rate, and daily activity level-were identified for the hypertension risk predictive model for women with an area under the ROC of 0.720 in the training set and 0.748 in the validation set. The nomograms for both men and women were externally well-validated. Conclusion: Gender differences may induce heterogeneity in hypertension risk prediction between men and women. Besides basic demographic and anthropometric parameters, information related to the functional status of the cardiovascular system and physical activity appears to be necessary.

16.
Front Immunol ; 14: 1161160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600772

RESUMEN

Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges. Here, we tested the hypothesis that the DNA repair protein OGG1 recognizes 8-oxoguanine (8-oxoGua) in promoters modulating IFN expression. We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). Mechanistically, OGG1 bound to 8-oxoGua in proximity to interferon response elements, which inhibits the IRF3/IRF7 and NF-κB/RelA DNA occupancy, while promoting the suppressor NF-κB1/p50-p50 homodimer binding to the IFN-λ2/3 promoter. In a mouse model of bronchiolitis induced by RSV infection, functional ablation of OGG1 by a small molecule inhibitor (TH5487) enhances IFN-λ production, decreases immunopathology, neutrophilia, and confers antiviral protection. These findings suggest that the ROS-generated epigenetic mark 8-oxoGua via its reader OGG1 serves as a homeostatic thresholding factor in IFN-λ expression. Pharmaceutical targeting of OGG1 activity may have clinical utility in modulating antiviral response.


Asunto(s)
ADN Glicosilasas , ADN , Epigénesis Genética , Interferón lambda , Animales , Ratones , ADN Glicosilasas/genética , Ratones Noqueados
17.
Front Immunol ; 14: 1186369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614238

RESUMEN

Recent advances have uncovered the non-random distribution of 7, 8-dihydro-8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA glycosylase 1 (OGG1), reads oxidative substrates and participates in transcriptional initiation. When redox signaling is activated in small airway epithelial cells, the DNA repair function of OGG1 is repurposed to transmit acute inflammatory signals accompanied by cell state transitions and modification of the extracellular matrix. Epithelial-mesenchymal and epithelial-immune interactions act cooperatively to establish a local niche that instructs the mucosal immune landscape. If the transitional cell state governed by OGG1 remains responsive to inflammatory mediators instead of differentiation, the collateral damage provides positive feedback to inflammation, ascribing inflammatory remodeling to one of the drivers in chronic pathologies. In this review, we discuss the substrate-specific read through OGG1 has evolved in regulating the innate immune response, controlling adaptations of the airway to environmental and inflammatory injury, with a focus on the reader function of OGG1 in initiation and progression of epithelial to mesenchymal transitions in chronic pulmonary disease.


Asunto(s)
ADN Glicosilasas , Membrana Mucosa , Guanina , Inmunidad Innata
18.
Heliyon ; 9(8): e18410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560628

RESUMEN

Background: Presently, the current research concerning Achilles tendon rupture repair (ATR) is predominantly centered on the ankle joint, with a paucity of evidence regarding its impact on the knee joint. ATR has the potential to significantly impede athletic performance and increase tibiofemoral contact forces in athletes. The purpose of this study was to prognosticate the distribution of stress within the knee joint during a countermovement jump through the use of a simulation method that amalgamated a musculoskeletal model of a patient who underwent Achilles tendon rupture repair with a finite element model of the knee joint. Methods: A male elite badminton player who had suffered an acute Achilles tendon rupture in his right leg one year prior was selected as our study subject. In order to analyze his biomechanical data, we employed both the OpenSim musculoskeletal model and finite element model to compute various parameters such as joint angles, joint moments, joint contact forces, and the distribution of knee joint stress. Results: During the jumping phase, a significantly lower knee extension angle (p < 0.001), ankle dorsiflexion angle (p = 0.002), peak vertical ground reaction force (p < 0.001), and peak tibiofemoral contact force (p = 0.009) were observed on the injured side than on the uninjured side. During the landing phase, the ankle range of motion (ROM) was significantly lower on the injured side than on the uninjured side (p = 0.009), and higher peak vertical ground reaction forces were observed (p = 0.012). Additionally, it is logical that an injured person will put higher load on the uninjured limb, but the finite element analysis indicated that the stresses on the injured side of medial meniscus and medial cartilage were significantly greater than the uninjured side. Conclusions: An Achilles tendon rupture can limit ankle range of motion and lead to greater joint stress on the affected area during countermovement jumps, especially during the landing phase. This increased joint stress may also transfer more stress to the soft tissues of the medial knee, thereby increasing the risk of knee injury. It is worth noting that this study only involves the average knee flexion angle and load after ATR in one athlete. Caution should be exercised when applying the conclusions, and in the future, more participants should be recruited to establish personalized knee finite element models to validate the results.

19.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37507883

RESUMEN

Glioblastoma (GBM) is an aggressive, common brain cancer known to disrupt redox biology, affecting behavior and DNA integrity. Past research remains inconclusive. To further understand this, an investigation was conducted on physical training's effects on behavior, redox balance, and genomic stability in GBMA models. Forty-seven male C57BL/6J mice, 60 days old, were divided into GBM and sham groups (n = 15, n = 10, respectively), which were further subdivided into trained (Str, Gtr; n = 10, n = 12) and untrained (Sut, Gut; n = 10, n = 15) subsets. The trained mice performed moderate aerobic exercises on a treadmill five to six times a week for a month while untrained mice remained in their enclosures. Behavior was evaluated using open-field and rotarod tests. Post training, the mice were euthanized and brain, liver, bone marrow, and blood samples were analyzed for redox and genomic instability markers. The results indicated increased latency values in the trained GBM (Gtr) group, suggesting a beneficial impact of exercise. Elevated reactive oxygen species in the parietal tissue of untrained GBM mice (Gut) were reduced post training. Moreover, Gtr mice exhibited lower tail intensity, indicating less genomic instability. Thus, exercise could serve as a promising supplemental GBM treatment, modulating redox parameters and reducing genomic instability.

20.
Antioxidants (Basel) ; 12(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37237995

RESUMEN

(1) Background: In cardiovascular applications, paclitaxel inhibits smooth muscle cell proliferation and migration and significantly reduces the occurrence of restenosis and target lesion revascularization. However, the cellular effects of paclitaxel in the myocardium are not well understood; (2) Methods: Wistar rats were divided into four groups: control (CTRL), isoproterenol (ISO) treated (1 mg/kg) and two groups treated with paclitaxel (PAC), which was administrated (10 mg/kg/day) for 5 days by gavage/per os alone or in combination (ISO + PAC) 3 weeks after ISO treatment. Ventricular tissue was harvested 24 h later for measurements of heme oxygenase (HO-1), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), NF-κB, TNF-α and myeloperoxidase (MPO); (3) Results: HO-1 protein concentration, HO-1 activity, SOD protein concentration and total glutathione significantly decreased in response to ISO treatment. When PAC was administered in conjunction with ISO, HO-1, SOD concentration and total glutathione were not different from control levels. MPO activity, NF-κB concentration and TNF-α protein concentration were significantly increased in the ISO-only group, while the levels of these molecules were restored when PAC was co-administered; (4) Conclusions: Oral administration of PAC can maintain the expression of important antioxidants, anti-inflammatory molecules, HO-1, SOD and GSH, and suppress the production of TNF-α, MPO and NF-κB, which are involved in myocardial damage. The principal component of this cellular defense seems to be the expression of HO-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...