Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Mol Biosci ; 10: 1126008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845549

RESUMEN

Background: Peanut-allergic individuals react upon their first known ingestion of peanuts, suggesting sensitization occurs through non-oral exposure. Increasing evidence suggests that the respiratory tract is a probable site for sensitization to environmental peanuts. However, the response of the bronchial epithelium to peanut allergens has never been explored. Furthermore, food matrix-derived lipids play an important role in allergic sensitization. Objective: To contribute to a better understanding of the mechanisms of allergic sensitization to peanuts via inhalation, by exploring the direct effect of the major peanut allergens Ara h 1 and Ara h 2 and peanut lipids on bronchial epithelial cells. Methods: Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with peanut allergens and/or peanut lipids (PNL). Barrier integrity, transport of allergens across the monolayers, and release of mediators were monitored. Results: Ara h 1 and Ara h 2 impacted the barrier integrity of the 16HBE14o- bronchial epithelial cells and crossed the epithelial barrier. Ara h 1 also induced the release of pro-inflammatory mediators. PNL improved the barrier function of the cell monolayers, decreased paracellular permeability and reduced the amount of allergens crossing the epithelial layer. Conclusion: Our study provides evidence of the transport of Ara h 1 and Ara h 2 across the airway epithelium, of the induction of a pro-inflammatory milieu, and identifies an important role for PNL in controlling the amount of allergens that can cross the epithelial barrier. These, all together, contribute to a better understanding of the effects of peanuts exposure on the respiratory tract.

2.
Clin Transl Allergy ; 12(8): e12177, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949989

RESUMEN

Background: Almond allergy is common and can manifest in two different forms. Primary almond allergy has been reported to be associated with sensitization to almond legumin Pru du 6. In birchendemic regions, there is a link between birch-pollinosis which is likely based on a cross-reactive Bet v 1 homologue, a yet unidentified allergen in almond. Therefore, we sought to identify and characterize a Bet v 1-homologue in almond. Methods: The expression of a Bet v 1 homologue in almond kernels was confirmed by mass spectrometry. The recombinant protein was produced in Escherichia coli and its cross-reactivity and allergenic potency was analyzed by IgE quantitative and competitive ELISA, immunoblotting and basophil histamine release using sera from 17 almond allergic patients. Results: The identified Bet v 1 homologue received the designation Pru du 1.0101. Pru du 1.0101 bound IgE from 82 % of almond allergic patients. Bet v 1 was able to inhibit IgE-binding to rPru du 1 by 100%, while rPru du 1 inhibited IgE binding to rBet v 1 by 48%. Pru du 1.0101 activated basophils, though 100- to 1000-fold higher concentrations were required for maximum activation in comparison to rBet v 1. Conclusion: Considering the strong inhibition capacity and higher allergenic potency of Bet v 1, the results provide compelling evidence for primary sensitization to Bet v 1 in case of birch pollen associated almond allergy. Combining Pru du 6 and Pru du 1 in diagnostic approaches may help to discriminate between primary and birch-pollen associated almond allergy.

3.
Food Chem ; 370: 131028, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525424

RESUMEN

Macadamia nut is an increasingly popular food item of a healthy diet. However, macadamia nut is also a potent allergenic food. To date, there is little information about the allergenic proteins involved. In this study, using sera from macadamia nut allergic individuals, four IgE-binding proteins were detected. Their identities were determined by tandem mass spectrometry with de novo sequencing. Three IgE-reactive proteins, the vicilin Mac i 1, the legumin Mac i 2 and the antimicrobial peptide 2a/Mac i 1 (28-76) were purified from the nut while the non-specific lipid transfer protein was produced as a recombinant in Pichia pastoris. IgE-binding assays using sera from well-characterized groups of tree nut and/or peanut allergic patients revealed that the allergens were mainly recognized by sera from macadamia nut allergic individuals. Hence, these newly discovered allergens will enable molecular diagnostics to identify patients at high risk of macadamia nut allergy.


Asunto(s)
Fabaceae , Hipersensibilidad a la Nuez , Alérgenos , Humanos , Macadamia/genética , Proteínas de Plantas/genética , Proteínas Citotóxicas Formadoras de Poros , Saccharomycetales , Proteínas de Almacenamiento de Semillas
4.
J Allergy Clin Immunol ; 149(5): 1786-1794.e12, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740603

RESUMEN

BACKGROUND: Birch pollen is an important elicitor of respiratory allergy. The major allergen, Bet v 1, binds IgE exclusively via conformational epitopes. OBJECTIVE: We identified Bet v 1-specific epitope repertoires of IgE and IgG from birch pollen-allergic and nonallergic subjects. METHODS: Chimeric proteins were created by grafting individual epitope-sized, contiguous surface patches of Bet v 1 onto a nonallergenic structural homolog and expressed in Escherichia coli. Binding of IgE, IgG1, and IgG4 from sera of 30 birch pollen-allergic and 11 nonallergic subjects to Bet v 1, 13 chimeric proteins, and 4 bacterial Bet v 1 homologs were measured by ELISA. The proportion of epitope-specific in-total Bet v 1-specific IgE and the cross-reactivity of Bet v 1-specific IgE with bacterial homologs were determined by competitive ELISA. RESULTS: Thirteen soluble, correctly folded chimeric proteins were produced. IgE from 27 of 30 birch pollen-allergic patients bound to 1 to 12 chimeric proteins (median, 4.0), with patient-specific patterns evident. Three chimeras binding IgE from the majority of sera were identified, the grafted patches of which overlapped with previously published epitopes. Patterns of IgG1 and IgG4 binding to the chimeric proteins did not correspond to the binding patterns of IgE. Sera of 19 of 30 birch pollen-allergic patients contained low amounts of IgE to bacterial homologs. Bacterial proteins were able to partially inhibit IgE binding to Bet v 1. CONCLUSION: Epitopes recognized by Bet v 1-specific antibodies from birch pollen-allergic patients are specific to each patient and differ between IgE, IgG1, and IgG4.


Asunto(s)
Antígenos de Plantas , Hipersensibilidad , Alérgenos , Reacciones Cruzadas , Epítopos , Humanos , Inmunoglobulina E , Inmunoglobulina G , Proteínas de Plantas , Polen , Proteínas Recombinantes de Fusión
5.
Front Plant Sci ; 12: 723363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671372

RESUMEN

Peanut allergy is a potentially life-threatening disease that is mediated by allergen-specific immunoglobulin E (IgE) antibodies. The major peanut allergen Ara h 2, a 2S albumin seed storage protein, is one of the most dangerous and potent plant allergens. Ara h 2 is posttranslationally modified to harbor four disulfide bridges and three hydroxyprolines. These hydroxyproline residues are required for optimal IgE-binding to the DPYSPOHS motifs representing an immunodominant IgE epitope. So far, recombinant Ara h 2 has been produced in Escherichia coli, Lactococcus lactis, Trichoplusia ni insect cell, and Chlamydomonas reinhardtii chloroplast expression systems, which were all incapable of proline hydroxylation. However, molecular diagnosis of peanut allergy is performed using either natural or E. coli-produced major peanut allergens. As IgE from the majority of patients is directed to Ara h 2, it is of great importance that the recombinant Ara h 2 harbors all of its eukaryotic posttranslational modifications. We produced hydroxyproline-containing and correctly folded Ara h 2 in the endoplasmic reticulum of leaf cells of Nicotiana benthamiana plants, using the plant virus-based magnICON® transient expression system with a yield of 200 mg/kg fresh biomass. To compare prokaryotic with eukaryotic expression methods, Ara h 2 was expressed in E. coli together with the disulfide-bond isomerase DsbC and thus harbored disulfide bridges but no hydroxyprolines. The recombinant allergens from N. benthamiana and E. coli were characterized and compared to the natural Ara h 2 isolated from roasted peanuts. Natural Ara h 2 outperformed both recombinant proteins in IgE-binding and activation of basophils via IgE cross-linking, the latter indicating the potency of the allergen. Interestingly, significantly more efficient IgE cross-linking by the N. benthamiana-produced allergen was observed in comparison to the one induced by the E. coli product. Ara h 2 from N. benthamiana plants displayed a higher similarity to the natural allergen in terms of basophil activation due to the presence of hydroxyproline residues, supporting so far published data on their contribution to the immunodominant IgE epitope. Our study advocates the use of N. benthamiana plants instead of prokaryotic expression hosts for the production of the major peanut allergen Ara h 2.

6.
Allergy ; 76(8): 2555-2564, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33724487

RESUMEN

BACKGROUND: Evidence has accumulated that birch pollen immunotherapy reduces rhinoconjunctivitis to pollen of birch homologous trees. Therapeutic efficacy has been associated with IgE-blocking IgG antibodies. We have recently shown that sera collected after 16 weeks of sublingual immunotherapy with recombinant Bet v 1 (rBet v 1-SLIT) display strong IgE-blocking bioactivity for Bet v 1. Here, we assessed whether rBet v 1-SLIT-induced IgG antibodies display cross-blocking activity to related allergens in Fagales pollen. METHODS: IgE, IgG1 and IgG4 reactivity to recombinant Bet v 1, Aln g 1, Car b 1, Ost c 1, Cor a 1, Fag s 1, Cas s 1 and Que a 1 were assessed in pre- and post-SLIT samples of 17 individuals by ELISA. A basophil inhibition assay using stripped basophils re-sensitized with a serum pool containing high Bet v 1-specific IgE levels was established and used to assess CD63 expression in response to allergens after incubation with pre-SLIT or post-SLIT samples. IgG1 and IgG4 were depleted from post-SLIT samples to assess its contribution to IgE-cross-blocking. RESULTS: Sublingual immunotherapy with recombinant Bet v 1 boosted cross-reactive IgE antibodies and induced IgG1 and IgG4 antibodies with inter- and intra-individually differing reactivity to the homologs. Highly variable cross-blocking activities of post-SLIT samples to the different allergens were found. IgG1 and IgG4 antibodies displayed cross-blocking activity with individual variance. CONCLUSIONS: Our mechanistic approach suggested that immunotherapy with the reference allergen Bet v 1 induces individual repertoires of cross-reactive IgG1 and IgG4 antibodies. The cross-blocking bioactivity of these antibodies was also highly variable and neither predictable from protein homology nor IgE-cross-reactivity.


Asunto(s)
Antígenos de Plantas/inmunología , Antígenos de Plantas/uso terapéutico , Inmunoterapia Sublingual , Alérgenos , Anticuerpos Bloqueadores , Fagales , Humanos , Inmunoglobulina E , Proteínas de Plantas , Proteínas Recombinantes
7.
Front Allergy ; 2: 732178, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35387047

RESUMEN

The accurate and precise diagnosis of IgE-mediated fish allergy is one of the biggest challenges in allergy diagnostics. A wide range of fish species that belong to evolutionary distant classes are consumed globally. Moreover, each fish species may contain multiple isoforms of a given allergen that often differ in their allergenicity. Recent studies indicated that the cross-reactivity between different fish species is limited in some cases and depends on the evolutionary conservation of the involved allergens. Fish allergens belong to several protein families with different levels of stability to food processing. Additionally, different preparation methods may contribute to specific sensitization patterns to specific fish species and allergens in different geographic regions. Here, we review the challenges and opportunities for improved diagnostic approaches to fish allergy. Current diagnostic shortcomings include the absence of important region-specific fish species in commercial in vitro and in vivo tests as well as the lack of their standardization as has been recently demonstrated for skin prick test solutions. These diagnostic shortcomings may compromise patients' safety by missing some of the relevant species and yielding false negative test results. In contrast, the avoidance of all fish as a common management approach is usually not necessary as many patients may be only sensitized to specific species and allergens. Although food challenges remain the gold standard, other diagnostic approaches are investigated such as the basophil activation test. In the context of molecular allergy diagnosis, we discuss the usefulness of single allergens and raw and heated fish extracts. Recent developments such as allergen microarrays offer the possibility to simultaneously quantify serum IgE specific to multiple allergens and allergen sources. Such multiplex platforms may be used in the future to design diagnostic allergen panels covering evolutionary distant fish species and allergens relevant for particular geographic regions.

8.
Front Allergy ; 2: 797456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35389605

RESUMEN

[This corrects the article DOI: 10.3389/falgy.2021.732178.].

9.
J Allergy Clin Immunol ; 145(1): 229-238, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525384

RESUMEN

BACKGROUND: To date, no safe allergen-specific immunotherapy for patients with peanut allergy is available. Previous trials were associated with severe side effects. OBJECTIVE: We sought to determine the relative importance of conformational and linear IgE-binding epitopes of the major peanut allergen Ara h 2 and to produce a hypoallergenic variant with abolished anaphylactogenic activity. METHODS: Wild-type Ara h 2 and a mutant lacking the loops containing linear IgE epitopes were produced in insect cells. Conformational IgE epitopes were removed by unfolding these proteins through reduction and alkylation. IgE binding was tested by means of ELISA with sera from 48 Ara h 2-sensitized patients with peanut allergy. Basophil activation and T-cell proliferation were tested with blood samples from selected patients. Anaphylactogenic potency was tested by using intraperitoneal challenge of mice sensitized intragastrically to peanut extract. RESULTS: Patients' IgE recognized conformational and linear epitopes in a patient-specific manner. The unfolded mutant lacking both types of epitopes displayed significantly lower IgE binding (median ELISA OD, 0.03; interquartile range, 0.01-0.06) than natural Ara h 2 (median ELISA OD, 0.99; interquartile range, 0.90-1.03; P < .01). Basophil activation by unfolded mutant Ara h 2 was low (median area under the curve, 72 vs 138 for native wild-type Ara h 2; P < .05), but its ability to induce T-cell proliferation was retained. Unfolded mutants without conformational epitopes did not induce anaphylaxis in peanut-sensitized mice. CONCLUSIONS: By removing conformational and linear IgE epitopes, a hypoallergenic Ara h 2 mutant with abolished IgE binding and anaphylactogenic potency but retained T-cell activation was generated.


Asunto(s)
Albuminas 2S de Plantas , Anafilaxia/inmunología , Antígenos de Plantas , Basófilos/inmunología , Epítopos/inmunología , Inmunoglobulina E/inmunología , Mutación , Linfocitos T/inmunología , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/inmunología , Adolescente , Adulto , Secuencia de Aminoácidos , Anafilaxia/genética , Anafilaxia/patología , Animales , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Basófilos/patología , Niño , Preescolar , Epítopos/genética , Femenino , Humanos , Lactante , Activación de Linfocitos , Masculino , Ratones , Persona de Mediana Edad , Linfocitos T/patología
10.
Mol Immunol ; 112: 140-150, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102986

RESUMEN

The prevalence of fish allergy among fish-processing workers is higher than in the general population, possibly due to sensitization via inhalation and higher exposure. However, the response of the bronchial epithelium to fish allergens has never been explored. Parvalbumins (PVs) from bony fish are major sensitizers in fish allergy, while cartilaginous fish and their PVs are considered less allergenic. Increasing evidence demonstrates that components other than proteins from the allergen source, such as low molecular weight components smaller than 3 kDa (LMC) from pollen, may act as adjuvants during allergic sensitization. We investigated the response of bronchial epithelial cells to PVs and to LMC from Atlantic cod, a bony fish, and gummy shark, a cartilaginous fish. Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with fish PVs and/-or the corresponding fish LMC. Barrier integrity, transport of PVs across the monolayers and release of mediators were monitored. Intact PVs from both the bony and the cartilaginous fish were rapidly internalized by the cells and transported to the basolateral side of the monolayers. The PVs did not disrupt the epithelial barrier integrity nor did they modify the release of proinflammatory cytokines. In contrast, LMC from both fish species modified the physical and immunological properties of the epithelial barrier and the responses differed between bony and cartilaginous fish. While the barrier integrity was lowered by cod LMC 24 h after cell stimulation, it was increased by up to 2.3-fold by shark LMC. Furthermore, LMC from both fish species increased basolateral and apical release of IL-6 and IL-8, while CCL2 release was increased by cod but not by shark LMC. In summary, our study demonstrated the rapid transport of PVs across the epithelium which may result in their availability to antigen presenting cells required for allergic sensitization. Moreover, different cell responses to LMC derived from bony versus cartilaginous fish were observed, which may play a role in different allergenic potentials of these two fish classes.


Asunto(s)
Alérgenos/inmunología , Bronquios/inmunología , Citocinas/inmunología , Células Epiteliales/inmunología , Peces/inmunología , Hipersensibilidad a los Alimentos/inmunología , Inflamación/inmunología , Animales , Línea Celular , Quimiocina CCL2/inmunología , Humanos , Interleucina-6/inmunología , Interleucina-8/inmunología , Peso Molecular , Parvalbúminas/inmunología , Alimentos Marinos
11.
12.
Sci Rep ; 9(1): 2007, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765752

RESUMEN

Plant non-specific lipid transfer proteins type 1 (nsLTP1) are small basic proteins with a hydrophobic cavity able to host a number of different ligands: i.e. fatty acids, fatty acyl-CoA, phospholipids, glycolipids, and hydroxylated fatty acids. However, ligand binding specificity differs among nsLTPs. Within this protein family, Jug r 3 from walnut has been identified as a major allergen. So far, data on the structural characterization of Jug r 3 and its lipid binding capacity are lacking. We report the results from a fluorescence-based ligand-binding assay and ligand-based NMR experiments, to study the binding interactions between Jug r 3 and the 18-carbon monounsaturated oleic acid. Furthermore, protein-based NMR experiments were employed to detect the oleate binding site of Jug r 3. The NMR data were used to dock the oleate molecule into the structural model of Jug r 3. Finally, the impact of the interaction on the allergenic potential of Jug r 3 was investigated by IgE ELISA with 6 sera from walnut allergic patients. Our data corroborate the hypothesis of direct impact of food-derived matrix on the IgE reactivity of nsLTPs.


Asunto(s)
Alérgenos/química , Alérgenos/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Juglans , Metabolismo de los Lípidos , Alérgenos/inmunología , Proteínas Portadoras/inmunología , Modelos Moleculares , Estructura Terciaria de Proteína
15.
J Allergy Clin Immunol Pract ; 7(2): 500-508.e11, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471362

RESUMEN

BACKGROUND: Clinical reactions to bony fish species are common in patients with allergy to fish and are caused by parvalbumins of the ß-lineage. Cartilaginous fish such as rays and sharks contain mainly α-parvalbumins and their allergenicity is not well understood. OBJECTIVE: To investigate the allergenicity of cartilaginous fish and their α-parvalbumins in individuals allergic to bony fish. METHODS: Sensitization to cod, salmon, and ray among patients allergic to cod, salmon, or both (n = 18) was explored by prick-to-prick testing. Clinical reactivity to ray was assessed in 11 patients by food challenges or clinical workup. IgE-binding to ß-parvalbumins (cod, carp, salmon, barramundi, tilapia) and α-parvalbumins (ray, shark) was determined by IgE-ELISA. Basophil activation tests and skin prick tests were performed with ß-parvalbumins from cod, carp, and salmon and α-parvalbumins from ray and shark. RESULTS: Tolerance of ray was observed in 10 of 11 patients. Prick-to-prick test reactions to ray were markedly lower than to bony fish (median wheal diameter 2 mm with ray vs 11 mm with cod and salmon). IgE to α-parvalbumins was lower (median, 0.1 kU/L for ray and shark) than to ß-parvalbumins (median, ≥1.65 kU/L). Furthermore, α-parvalbumins demonstrated a significantly reduced basophil activation capacity compared with ß-parvalbumins (eg, ray vs cod, P < .001; n = 18). Skin prick test further demonstrated lower reactivity to α-parvalbumins compared with ß-parvalbumins. CONCLUSIONS: Most patients allergic to bony fish tolerated ray, a cartilaginous fish, because of low allergenicity of its α-parvalbumin. A careful clinical workup and in vitro IgE-testing for cartilaginous fish will improve patient management and may introduce an alternative to bony fish into patients' diet.


Asunto(s)
Alérgenos/efectos adversos , Proteínas de Peces/efectos adversos , Peces , Hipersensibilidad a los Alimentos/etiología , Parvalbúminas/inmunología , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rajidae
16.
Mol Immunol ; 100: 3-13, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29625844

RESUMEN

A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G. Marsh developed a nomenclature based on the Linnaean taxonomy, and further established the World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee in 1986. Its stated aim was to standardize the names given to the antigens (allergens) that caused IgE-mediated allergies in humans. The Sub-Committee first published a revised list of allergen names in 1986, which continued to grow with rare publications until 1994. Between 1994 and 2007 the database was a text table online, then converted to a more readily updated website. The allergen list became the Allergen Nomenclature database (www.allergen.org), which currently includes approximately 880 proteins from a wide variety of sources. The Sub-Committee includes experts on clinical and molecular allergology. They review submissions of allergen candidates, using evidence-based criteria developed by the Sub-Committee. The review process assesses the biochemical analysis and the proof of allergenicity submitted, and aims to assign allergen names prior to publication. The Sub-Committee maintains and revises the database, and addresses continuous challenges as new "omics" technologies provide increasing data about potential new allergens. Most journals publishing information on new allergens require an official allergen name, which involves submission of confidential data to the WHO/IUIS Allergen Nomenclature Sub-Committee, sufficient to demonstrate binding of IgE from allergic subjects to the purified protein.


Asunto(s)
Alérgenos/inmunología , Animales , Bases de Datos Factuales , Humanos , Inmunoglobulina E/inmunología , Organización Mundial de la Salud
17.
Int Arch Allergy Immunol ; 173(1): 1-11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28456806

RESUMEN

The increasing number of available data on allergenic proteins demanded the establishment of structured, freely accessible allergen databases. In this review article, features and applications of 6 of the most widely used allergen databases are discussed. The WHO/IUIS Allergen Nomenclature Database is the official resource of allergen designations. Allergome is the most comprehensive collection of data on allergens and allergen sources. AllergenOnline is aimed at providing a peer-reviewed database of allergen sequences for prediction of allergenicity of proteins, such as those planned to be inserted into genetically modified crops. The Structural Database of Allergenic Proteins (SDAP) provides a database of allergen sequences, structures, and epitopes linked to bioinformatics tools for sequence analysis and comparison. The Immune Epitope Database (IEDB) is the largest repository of T-cell, B-cell, and major histocompatibility complex protein epitopes including epitopes of allergens. AllFam classifies allergens into families of evolutionarily related proteins using definitions from the Pfam protein family database. These databases contain mostly overlapping data, but also show differences in terms of their targeted users, the criteria for including allergens, data shown for each allergen, and the availability of bioinformatics tools.


Asunto(s)
Alérgenos , Bases de Datos de Proteínas , Epítopos/química , Proteínas/química , Organización Mundial de la Salud
19.
PLoS One ; 10(11): e0142625, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579717

RESUMEN

Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three ß-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Inmunoglobulina E/inmunología , Parvalbúminas/inmunología , Alérgenos/aislamiento & purificación , Animales , Reacciones Cruzadas/inmunología , Mapeo Epitopo , Epítopos/inmunología , Peces/inmunología , Humanos , Inmunoglobulina E/aislamiento & purificación , Parvalbúminas/aislamiento & purificación , Anticuerpos de Cadena Única/inmunología
20.
Chin J Integr Med ; 21(10): 772-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26525548

RESUMEN

OBJECTIVE: To develop a reliable method to assess the stability of xinyue capsules containing Panax quinquefolius saponins according to European quality standards. METHODS: An efficient high-performance liquid chromatography ultraviolet (HPLC-UV) method was established to analyse six main ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in six different batches (120 capsules/batch) from the same lot of xinyue capsules and in one batch measured six times within one day. The six ginsenosides were separated on a Hypersil BDS-C18 column (3 µm, 100 mm×3 mm) at a flow rate of 0.5 mL/min. Gradient elution was performed using a mobile phase gradient of acetonitrile-water modified with 0.01% formic acid. The HPLC chromatograms were analyzed with "LC data comparison" using Lab Solutions software. RESULTS: The HPLC peaks were identified by comparing their retention times (Rg1: 23.44 min, Re: 23.77 min, Rb1: 35.24 min, Rc: 36.18 min, Rb2: 38.55 min and Rd: 40.88 min) with those of the standards under the same chromatographic conditions, which showed similar results among the samples of six different batches and among the samples from one batch detected six times within one day. CONCLUSIONS: Xinyue capsules have good drug intra-day consistency at room temperature and exhibit a consistent quality between different batches. This study established a reliable method to assess the stability of xinyue capsules, which is suitable for further qualitative analysis and may assist in promoting the safe and effective use of Chinese herbal medicine.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ginsenósidos/análisis , Saponinas/análisis , Cápsulas , Estabilidad de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...