Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334641

RESUMEN

An adverse perinatal environment can increase long-term cancer risk, although the precise nature of associated perinatal triggers remain unknown. Sleep apnea is a common condition during pregnancy, characterized by recurrent cessations in breathing during sleep, and the potential consequences of sleep apnea during pregnancy as it relates to breast cancer risk in offspring have not been explored. To model sleep apnea, Sprague-Dawley dams were exposed during gestation to nightly intermittent hypoxia (GIH) or normoxia (GNx), and the mammary glands of female offspring were examined. GIH offspring demonstrated increased epithelial stem and progenitor cell populations, which are associated with diminished transforming growth factor beta (TGFß) activity. Elevations in adipose tissue stem cells in the mammary gland were also identified in GIH offspring. In aging females, mammary tumors formed in GIH offspring. These tumors displayed a dramatic increase in stroma compared to tumors from GNx offspring, as well as distinct patterns of expression of stem cell-related pathways. Together, these results suggest that exposure to sleep apnea during pregnancy leads to lasting changes in the mammary glands of female offspring. Increased stem and progenitor cell populations as a result of GIH exposure could enhance long-term breast cancer risk, as well as alter the clinical behavior of resulting breast tumors.


Asunto(s)
Neoplasias Mamarias Animales , Efectos Tardíos de la Exposición Prenatal , Síndromes de la Apnea del Sueño , Embarazo , Animales , Humanos , Femenino , Efectos Tardíos de la Exposición Prenatal/genética , Fenotipo , Hipoxia/complicaciones , Hipoxia/genética , Síndromes de la Apnea del Sueño/complicaciones
2.
Exp Physiol ; 108(11): 1376-1385, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37642495

RESUMEN

Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.


Asunto(s)
Hipertensión , Síndromes de la Apnea del Sueño , Animales , Femenino , Humanos , Masculino , Embarazo , Ratas , Hipotálamo/metabolismo , Hipoxia , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley
3.
PLoS Biol ; 20(2): e3001502, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113852

RESUMEN

Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.


Asunto(s)
Conducta Animal , Hipoxia/fisiopatología , Efectos Tardíos de la Exposición Prenatal/etiología , Sinapsis/patología , Animales , Trastorno Autístico/etiología , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/fisiopatología , Ratas Sprague-Dawley , Caracteres Sexuales , Síndromes de la Apnea del Sueño , Serina-Treonina Quinasas TOR
4.
J Pharmacol Exp Ther ; 375(1): 210-222, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32661056

RESUMEN

The neural control system underlying breathing is sexually dimorphic with males being more vulnerable to dysfunction. Microglia also display sex differences, and their role in the architecture of brainstem respiratory rhythm circuitry and modulation of cervical spinal cord respiratory plasticity is becoming better appreciated. To further understand the molecular underpinnings of these sex differences, we performed RNA sequencing of immunomagnetically isolated microglia from brainstem and cervical spinal cord of adult male and female rats. We used various bioinformatics tools (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, STRING, MAGICTRICKS) to functionally categorize identified gene sets, as well as to pinpoint common transcriptional gene drivers that may be responsible for the observed transcriptomic differences. We found few sex differences in the microglial transcriptomes derived from the brainstem, but several hundred genes were differentially expressed by sex in cervical spinal microglia. Comparing brainstem and spinal microglia within and between sexes, we found that the major factor guiding transcriptomic differences was central nervous system (CNS) location rather than sex. We further identified key transcriptional drivers that may be responsible for the transcriptomic differences observed between sexes and CNS regions; enhancer of zeste homolog 2 emerged as the predominant driver of the differentially downregulated genes. We suggest that functional gene alterations identified in metabolism, transcription, and intercellular communication underlie critical microglial heterogeneity and sex differences in CNS regions that contribute to respiratory disorders categorized by dysfunction in neural control. These data will also serve as an important resource data base to advance our understanding of innate immune cell contributions to sex differences and the field of respiratory neural control. SIGNIFICANCE STATEMENT: The contributions of central nervous system (CNS) innate immune cells to sexually dimorphic differences in the neural circuitry controlling breathing are poorly understood. We identify key transcriptomic differences, and their transcriptional drivers, in microglia derived from the brainstem and the C3-C6 cervical spinal cord of healthy adult male and female rats. Gene alterations identified in metabolism, gene transcription, and intercellular communication likely underlie critical microglial heterogeneity and sex differences in these key CNS regions that contribute to the neural control of breathing.


Asunto(s)
Tronco Encefálico/metabolismo , Médula Cervical/metabolismo , Microglía/metabolismo , Respiración/genética , Caracteres Sexuales , Transcriptoma/genética , Animales , Tronco Encefálico/inmunología , Médula Cervical/inmunología , Femenino , Inmunidad Innata/genética , Masculino , Microglía/inmunología , Ratas , Respiración/inmunología
5.
PLoS One ; 15(1): e0228109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978144

RESUMEN

Irradiation of food at 50-55 kGy results in a profound, chronic demyelinating-remyelinating disease of the entire central nervous system (CNS) in cats, named Feline Irradiated Diet-Induced Demyelination (FIDID). This study examines the early stages of demyelination and long-term consequences of demyelination and remyelination on axon survival or loss. Myelin vacuolation is the primary defect leading to myelin breakdown, demyelination then prompt remyelination in the spinal cord and brain. There is no evidence of oligodendrocyte death. The spinal cord dorsal column is initially spared yet eventually becomes severely demyelinated with subsequent loss of axons in the core and then surface of the fasciculus gracilis. However remyelination of the sub-pial axons in the dorsal column results in their protection. While there was a lack of biochemical evidence of Vitamin B12 deficiency, the pathological similarities of FIDID with sub-acute combined degeneration (SCD) led us to explore treatment with Vitamin B12. Treatment led to recovery or improvement in some cats and neurologic relapse on cessation of B12 therapy. While the reason that irradiated food is myelinotoxic in the cat remains unresolved, nonetheless the neuropathological changes match exactly what is seen in SCD and its models and provide an ideal model to study the cellular and molecular basis of remyelination.


Asunto(s)
Enfermedades Desmielinizantes/patología , Dieta , Degeneración Nerviosa/patología , Radiación , Enfermedad Aguda , Animales , Axones/patología , Gatos , Enfermedad Crónica , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Femenino , Macrófagos/patología , Masculino , Metaboloma , Microglía/patología , Vaina de Mielina/metabolismo , Degeneración Nerviosa/sangre , Degeneración Nerviosa/fisiopatología , Neuropatología , Remielinización , Médula Espinal/patología , Médula Espinal/fisiopatología , Factores de Tiempo , Vitamina B 12/sangre
6.
Proc Natl Acad Sci U S A ; 116(52): 27074-27083, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843913

RESUMEN

Multiple sclerosis (MS) is a common cause of neurologic disease in young adults that is primarily treated with disease-modifying therapies which target the immune and inflammatory responses. Promotion of remyelination has opened a new therapeutic avenue, but how best to determine efficacy of remyelinating drugs remains unresolved. Although prolongation and then shortening of visual evoked potential (VEP) latencies in optic neuritis in MS may identify demyelination and remyelination, this has not been directly confirmed. We recorded VEPs in a model in which there is complete demyelination of the optic nerve, with subsequent remyelination. We examined the optic nerves microscopically during active disease and recovery, and quantitated both demyelination and remyelination along the length of the nerves. Latencies of the main positive component of the control VEP demonstrated around 2-fold prolongation during active disease. VEP waveforms were nonrecordable in a few subjects or exhibited a broadened profile which precluded peak identification. As animals recovered neurologically, the VEP latencies decreased in association with complete remyelination of the optic nerve but remained prolonged relative to controls. Thus, it has been directly confirmed that VEP latencies reflect the myelin status of the optic nerve and will provide a surrogate marker in future remyelination clinical trials.

7.
Proc Natl Acad Sci U S A ; 115(50): E11807-E11816, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30487224

RESUMEN

Endogenous remyelination of the CNS can be robust and restore function, yet in multiple sclerosis it becomes less complete with time. Promoting remyelination is a major therapeutic goal, both to restore function and to protect axons from degeneration. Remyelination is thought to depend on oligodendrocyte progenitor cells, giving rise to nascent remyelinating oligodendrocytes. Surviving, mature oligodendrocytes are largely regarded as being uninvolved. We have examined this question using two large animal models. In the first model, there is extensive demyelination and remyelination of the CNS, yet oligodendrocytes survive, and in recovered animals there is a mix of remyelinated axons interspersed between mature, thick myelin sheaths. Using 2D and 3D light and electron microscopy, we show that many oligodendrocytes are connected to mature and remyelinated myelin sheaths, which we conclude are cells that have reextended processes to contact demyelinated axons while maintaining mature myelin internodes. In the second model in vitamin B12-deficient nonhuman primates, we demonstrate that surviving mature oligodendrocytes extend processes and ensheath demyelinated axons. These data indicate that mature oligodendrocytes can participate in remyelination.


Asunto(s)
Oligodendroglía/fisiología , Remielinización/fisiología , Animales , Axones/fisiología , Gatos , Diferenciación Celular , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Macaca mulatta , Microscopía Electrónica de Transmisión , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/citología
8.
Ann Neurol ; 81(5): 690-702, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28393430

RESUMEN

OBJECTIVE: Our goal was to define the genetic cause of the profound hypomyelination in the taiep rat model and determine its relevance to human white matter disease. METHODS: Based on previous localization of the taiep mutation to rat chromosome 9, we tested whether the mutation resided within the Tubb4a (ß-tubulin 4A) gene, because mutations in the TUBB4A gene have been described in patients with central nervous system hypomyelination. To determine whether accumulation of microtubules led to progressive demyelination, we analyzed the spinal cord and optic nerves of 2-year-old rats by light and electron microscopy. Cerebral white matter from a patient with TUBB4A Asn414Lys mutation and magnetic resonance imaging evidence of severe hypomyelination were studied similarly. RESULTS: As the taiep rat ages, there is progressive loss of myelin in the brain and dorsal column of the spinal cord associated with increased oligodendrocyte numbers with accumulation of microtubules. This accumulation involved the entire cell body and distal processes of oligodendrocytes, but there was no accumulation of microtubules in axons. A single point mutation in Tubb4a (p.Ala302Thr) was found in homozygous taiep samples. A similar hypomyelination associated with increased oligodendrocyte numbers and arrays of microtubules in oligodendrocytes was demonstrated in the human patient sample. INTERPRETATION: The taiep rat is the first animal model of TUBB4 mutations in humans and a novel system in which to test the mechanism of microtubule accumulation. The finding of microtubule accumulation in a patient with a TUBB4A mutation and leukodystrophy confirms the usefulness of taiep as a model of the human disease. Ann Neurol 2017;81:690-702.


Asunto(s)
Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Microtúbulos/metabolismo , Nervio Óptico/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Tubulina (Proteína)/genética , Sustancia Blanca/diagnóstico por imagen , Animales , Preescolar , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/fisiopatología , Humanos , Imagen por Resonancia Magnética , Microscopía Electrónica , Ratas
9.
Transgenic Res ; 26(3): 411-417, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28409408

RESUMEN

Inducible Cre-ERT recombinase technology is widely used for gene targeting studies. The second generation of inducible Cre-ERT recombinase, hemizygous B6.129S-Tg(UBC-cre/ERT2)1Ejb/J (hereafter abbreviated as Cre-ERT2), a fusion of a mutated estrogen receptor and Cre recombinase, was engineered to be more efficient and specific than the original Cre-ERT. The putative mechanism of selective Cre-mediated recombination is Cre sequestration in the cytoplasm in the basal state with translocation to the nucleus only in the presence of tamoxifen. We utilized both a reporter mouse (B6.129 (Cg)-Gt(ROSA)26Sor tm4(ACTB-tdTomato,-EGFP)Luo /J) and endothelin converting enzyme-1 floxed transgenic mouse line to evaluate Cre-ERT2 activity. We observed spontaneous Cre activity in both settings. Unintended Cre activity is a confounding factor that has a potentially large impact on data interpretation. Thus, it is important to consider background Cre activity in experimental design.


Asunto(s)
Integrasas/genética , Integrasas/metabolismo , Ratones Transgénicos , Transgenes , Animales , Enzimas Convertidoras de Endotelina/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Tamoxifeno/farmacología
10.
Invest Ophthalmol Vis Sci ; 57(11): 4859-4868, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27654412

RESUMEN

PURPOSE: We determined whether the chronic lack of optic nerve myelination and subsequent axon loss is associated with optical coherence tomography (OCT) changes in the retinal nerve fiber layer (RNFL), and whether this models what occurs in multiple sclerosis (MS) and confers its use as a surrogate marker for axon degeneration. METHODS: Using an animal model of Pelizaeus-Merzbacher disease (shp) bilateral longitudinal measurements of the peripapillary RNFL (spectral-domain OCT), electroretinograms (ERG), and visual evoked potentials (VEP) were performed in affected and control animals from 5 months to 2 years and in individual animals at single time points. Light and electron microscopy of the optic nerve and retina and histomorphometric measurements of the RNFL were compared to OCT data. RESULTS: Of the shp animals, 17% had an average reduction of OCT RNFL thickness on the superior retinal quadrant compared to controls (P < 0.05). Electroretinograms showed normal photopic A- and B-waves but flash VEPs were disorganized in shp animals. Morphologically, the shp retinas and optic nerves revealed significant RNFL thinning (P < 0.001) without retinal ganglion cell (RGC) loss, decrease total and relative retinal axonal area, and loss of optic nerve axons. There was strong positive correlation between OCT and morphometric RNFL thickness measurements (r = 0.878, P = 0.004). CONCLUSION: The loss of optic nerve axons demonstrated in the shp model resulted in moderate thinning of the RNFL confirmed by OCT and histology. These results indicate that OCT-derived RNFL measurement can be a useful surrogate biomarker of optic nerve axon loss and potentially disease progression in demyelinating diseases.

11.
Exp Neurol ; 283(Pt B): 452-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27068622

RESUMEN

Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy.


Asunto(s)
Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Vaina de Mielina/patología , Animales , Enfermedades Desmielinizantes/complicaciones , Humanos , Regeneración Nerviosa/fisiología , Oligodendroglía
12.
PLoS One ; 11(2): e0148571, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849124

RESUMEN

A pleiotropic quantitative trait locus (QTL) for bone geometry and mechanical performance in mice was mapped to distal chromosome 4 via an intercross of recombinant congenic mice HcB-8 and HcB-23. To study the QTL in isolation, we have generated C3H.B10-(rs6355453-rs13478087) (C.B.4.3) and C3H.B10-(rs6369860-D4Mit170) (C.B.4.2) congenic strains that harbor ~20 Mb and ~3 Mb, respectively, of chromosome 4 overlapping segments from C57BL/10ScSnA (B10) within the locus on a C3H/DiSnA (C3H) background. Using 3-point bend testing and standard beam equations, we phenotyped these mice for femoral mid-diaphyseal geometry and biomechanical performance. We analyzed the results via 2-way ANOVA, using sex and genotype as factors. In the C.B.4.3 strain, we found that homozygous B10/B10 male mice had smaller cross sectional area (CSA) and reduced total displacement than homozygous C3H/C3H mice. Sex by genotype interaction was also observed for maximum load and stiffness for C3H/C3H and B10/B10 mice, respectively. In C.B.4.2 strain, we found that homozygous B10/B10 mice had lower total displacement, post-yield displacement (PYD), stiffness, yield load and maximum load than mice harboring C3H allele. Sex by genotype interaction was observed in B10/B10 mice for perimeter, outer minor axis (OMA) and CSA. There were no significant differences in tissue level mechanical performance, which suggest that the QTL acts primarily on circumferential bone size. These data confirm the prior QTL mapping data and support other work demonstrating the importance of chromosome 4 QTL on bone modeling and bone responses to mechanical loading.


Asunto(s)
Cromosomas de los Mamíferos , Fémur/anatomía & histología , Fémur/fisiología , Sitios de Carácter Cuantitativo , Animales , Fenómenos Biomecánicos , Densidad Ósea/genética , Femenino , Masculino , Ratones Congénicos , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
13.
J Comp Neurol ; 524(5): 930-9, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26338416

RESUMEN

We studied the developmental pattern of oligodendrocyte differentiation and myelin formation in the fetal canine spinal cord from E40 to P0. The pattern of development matches what has been described in the spinal cord of humans, rodents, and many other species. Oligodendrocytes were first found at E40, close to the central canal, with their spread in a tangential manner to the ventral and then lateral columns. Myelin development followed the same pattern but was not seen until E46. A clear subpial zone lacking glial cells and myelin was seen in the lateral column in early development, suggesting that there may also be a radial component of migration of oligodendrocyte progenitor cells (OPCs) from a ventral site. This spatial-temporal developmental pattern seen in wild type matches a delay in myelination of the superficial tracts of the spinal cord seen in a canine myelin mutant, suggesting that the mutation prevents the distribution and differentiation of OPCs at an early, but narrow, window of time during fetal development.


Asunto(s)
Vaina de Mielina/fisiología , Neurogénesis/fisiología , Oligodendroglía/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Animales , Perros , Humanos , Médula Espinal/embriología
14.
Neurobiol Dis ; 75: 115-30, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25562656

RESUMEN

Major gaps in our understanding of the leukodystrophies result from their rarity and the lack of tissue for the interdisciplinary studies required to extend our knowledge of the pathophysiology of the diseases. This study details the natural evolution of changes in the CNS of the shaking pup (shp), a model of the classical form of the X-linked disorder Pelizaeus-Merzbacher disease, in particular in glia, myelin, and axons, which is likely representative of what occurs over time in the human disease. The mutation in the proteolipid protein gene, PLP1, leads to a delay in differentiation, increased cell death, and a marked distension of the rough endoplasmic reticulum in oligodendrocytes. However, over time, more oligodendrocytes differentiate and survive in the spinal cord leading to an almost total recovery of myelination, In contrast, the brain remains persistently hypomyelinated. These data suggest that shp oligodendrocytes may be more functional than previously realized and that their early recruitment could have therapeutic value.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad de Pelizaeus-Merzbacher/fisiopatología , Animales , Astrocitos/patología , Astrocitos/fisiología , Axones/patología , Axones/fisiología , Encéfalo/patología , Encéfalo/fisiopatología , Muerte Celular/fisiología , Perros , Femenino , Masculino , Mutación , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiología , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/patología , Médula Espinal/patología , Médula Espinal/fisiopatología
15.
J Neurosci ; 33(8): 3514-25, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426679

RESUMEN

We report a focal disturbance in myelination of the optic nerve in the osteopetrotic (op/op) mouse, which results from a spontaneous compression of the nerve resulting from stenosis of the optic canal. The growth of the op/op optic nerve was significantly affected, being maximally suppressed at postnatal day 30 (P30; 33% of age matched control). Myelination of the nerve in the optic canal was significantly delayed at P15, and myelin was almost completely absent at P30. The size of nerves and myelination were conserved both in the intracranial and intraorbital segments at P30, suggesting that the axons in the compressed site are spared in all animals at P30. Interestingly, we observed recovery both in the nerve size and the density of myelinated axons at 7 months in almost half of the optic nerves examined, although some nerves lost axons and became atrophic. In vivo and ex vivo electrophysiological examinations of P30 op/op mice showed that nerve conduction was significantly delayed but not blocked with partial recovery in some mice by 7 months. Transcardial perfusion of FITC-labeled albumin suggested that local ischemia was at least in part the cause of this myelination failure. These results suggest that the primary abnormality is dysmyelination of the optic nerve in early development. This noninvasive model system will be a valuable tool to study the effects of nerve compression on the function and survival of oligodendrocyte progenitor cells/oligodendrocytes and axons and to explore the mechanism of redistribution of oligodendrocyte progenitor cells with compensatory myelination.


Asunto(s)
Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Síndromes de Compresión Nerviosa/patología , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/patología , Nervio Óptico/patología , Animales , Ratones , Ratones Mutantes Neurológicos , Síndromes de Compresión Nerviosa/genética , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/genética , Oligodendroglía/patología , Oligodendroglía/fisiología , Nervio Óptico/fisiología , Osteopetrosis/genética , Células Madre/patología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...