Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 246, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831449

RESUMEN

BACKGROUND: Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change. Understanding the climatic conditions that vector species both tolerate physiologically and prefer behaviorally is critical to predicting the direction and magnitude of range expansions and the resulting impacts on human health. Temperature and humidity are key factors that determine the geographic extent of many arthropods, including vector species. METHODS: We characterized the habitat of two species of sand flies, Lutzomyia longipalpis and Pintomyia evansi. Additionally, we studied two behavioral factors of thermal fitness-thermal and humidity preference in two species of sand flies alongside a key aspect of physiological tolerance-desiccation resistance. RESULTS: We found that Lu. longipalpis is found at cooler and drier conditions than Pi. evansi. Our results also show significant interspecific differences in both behavioral traits, with Pi. evansi preferring warmer, more humid conditions than Lu. longipalpis. Finally, we found that Lu. longipalpis shows greater tolerance to extreme low humidity, and that this is especially pronounced in males of the species. CONCLUSIONS: Taken together, our results suggest that temperature and humidity conditions are key aspects of the climatic niche of Lutzomyia and Pintomyia sand flies and underscore the value of integrative studies of climatic tolerance and preference in vector biology.


Asunto(s)
Ecosistema , Humedad , Psychodidae , Temperatura , Animales , Psychodidae/fisiología , Psychodidae/clasificación , Femenino , Masculino , Insectos Vectores/fisiología
2.
mSphere ; 9(6): e0000924, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38771035

RESUMEN

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transition into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. Genomic work has revealed that Histoplasma is composed of at least five cryptic phylogenetic species that differ genetically. Three of those lineages have received new names. Here, we evaluated multiple phenotypic characteristics (colony morphology, secreted proteolytic activity, yeast size, and growth rate) of strains from five of the phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: Histoplasma capsulatum sensu stricto, Histoplasma ohiense, Histoplasma mississippiense, Histoplasma suramericanum, and an African lineage. We report diagnostic traits for three species. The other two species can be identified by a combination of traits. Our results suggest that (i) there are significant phenotypic differences among the cryptic species of Histoplasma and (ii) those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.IMPORTANCEIdentifying species boundaries is a critical component of evolutionary biology. Genome sequencing and the use of molecular markers have advanced our understanding of the evolutionary history of fungal pathogens, including Histoplasma, and have allowed for the identification of new species. This is especially important in organisms where morphological characteristics have not been detected. In this study, we revised the taxonomic status of the four named species of the genus Histoplasma, H. capsulatum sensu stricto (ss), H. ohiense, H. mississippiense, and H. suramericanum, and propose the use of species-specific phenotypic traits to aid their identification when genome sequencing is not available. These results have implications not only for evolutionary study of Histoplasma but also for clinicians, as the Histoplasma species could determine the outcome of disease and treatment needed.


Asunto(s)
Histoplasma , Histoplasmosis , Fenotipo , Filogenia , Histoplasma/genética , Histoplasma/clasificación , Histoplasma/patogenicidad , Histoplasma/aislamiento & purificación , Histoplasmosis/microbiología , Humanos , Genoma Fúngico
3.
Acta Trop ; 251: 107106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185188

RESUMEN

The mosquito Aedes albopictus (Diptera: Culicidae) is a vector species of the causal agents of Dengue, yellow fever, and Zika among other diseases pathogens. The species originated in Southeast Asia and has spread widely and rapidly in the last century. The species has been reported in localities from the Gulf of Guinea since the early 2000s, but systematic sampling has been scant. We sampled Ae. albopictus twice, in 2013 and 2023 across the altitudinal gradient in São Tomé and found that the species was present in all sampled years at altitudes up to 680 m. We also found some evidence of increases in proportional representation compared to Ae. aegypti over time. We report the presence of the species in Príncipe for the first time, suggesting that the range of Ae. albopictus is larger than previously thought. Finally, we use bioclimatic niche modeling to infer the potential range of Ae. albopictus and infer that the species has the potential to spread across a large portion of São Tomé and Príncipe. Our results suggest that Ae. albopictus has established itself as a resident species of the islands of the Gulf of Guinea and should be incorporated into the list of potential vectors that need to be surveyed and controlled.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Santo Tomé y Príncipe , Mosquitos Vectores
4.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260643

RESUMEN

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transitions into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. We have previously described that Histoplasma is composed of at least five cryptic species that differ genetically, and assigned new names to the lineages. Here we evaluated multiple phenotypic characteristics of 12 strains from five phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: H. capsulatum sensu stricto, H. ohiense, H. mississippiense, H. suramericanum, and an African lineage. We report diagnostic traits for two species. The other three species can be identified by a combination of traits. Our results suggest that 1) there are significant phenotypic differences among the cryptic species of Histoplasma, and 2) that those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.

5.
Nat Commun ; 14(1): 7494, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980422

RESUMEN

The physical principles that govern the function of biological structures also mediate their evolution, but the evolutionary drivers of morphological traits within complex structures can be difficult to predict. Here, we use morphological traits measured from 1096 3-dimensional bird wing scans from 178 species to test the interaction of two frameworks for relating morphology to evolution. We examine whether the evolutionary rate (σ2) and mode is dominated by the modular organization of the wing into handwing and armwing regions, and/or the relationship between trait morphology and functional output (i.e. mechanical sensitivity, driven here by flapping flight aerodynamics). Our results support discretization of the armwing and handwing as morphological modules, but morphological disparity and σ2 varied continuously with the mechanical sensitivity gradient and were not modular. Thus, mechanical sensitivity should be considered an independent and fundamental driver of evolutionary dynamics in biomechanical traits, distinct from morphological modularity.


Asunto(s)
Vuelo Animal , Alas de Animales , Animales , Fenómenos Biomecánicos , Alas de Animales/anatomía & histología , Aves , Modelos Biológicos
6.
Bioinform Adv ; 3(1): vbad144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840907

RESUMEN

Summary: Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of the National Center for Biotechnology Information Taxonomy and Global Biodiversity Information Facility databases to find associated synonyms with given target species names. Availability and implementation: PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page.

7.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609275

RESUMEN

Summary: Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of two commonly used taxonomic databases to find associated synonyms with given target species names. Availability and implementation: PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page. Contact: Lswhiteh@unc.edu. Supplemental Information: We provide documentation for PhyloMatcher, including walkthrough instructions for the GUI application on the Releases page of https://github.com/Lswhiteh/PhyloMatcher.

8.
J Evol Biol ; 36(8): 1185-1197, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37428811

RESUMEN

Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, in Cinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life.


Asunto(s)
Motivación , Passeriformes , Animales , Filogenia , Ecosistema , Carbono
9.
Evolution ; 77(2): 622-624, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622334

RESUMEN

Morphological integration is the result of natural selection influencing the evolution of multiple morphological traits simultaneously. Understanding how and why morphological traits covary is fundamental to uncovering the processes that drive phenotypic diversity. In a new study, Conaway and Adams (2022) review the utility of several methods for quantifying morphological integration and provide a new metric that will facilitate broad, novel comparisons of morphological integration among taxa and between different morphological features.


Asunto(s)
Evolución Biológica , Selección Genética , Fenotipo
10.
iScience ; 24(7): 102717, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34235412

RESUMEN

The major lineages of nectar-feeding birds (hummingbirds, sunbirds, honeyeaters, flowerpiercers, and lorikeets) are considered examples of convergent evolution. We compared sucrose digestion capacity and sucrase enzymatic activity per unit intestinal surface area among 50 avian species from the New World, Africa, and Australia, including 20 nectarivores. With some exceptions, nectarivores had smaller intestinal surfaces, higher sucrose hydrolysis capacity, and greater sucrase activity per unit intestinal area. Convergence analysis showed high values for sucrose hydrolysis and sucrase activity per unit intestinal surface area in specialist nectarivores, matching the high proportion of sucrose in the nectar of the plants they pollinate. Plants pollinated by generalist nectar-feeding birds in the Old and New Worlds secrete nectar in which glucose and fructose are the dominant sugars. Matching intestinal enzyme activity in birds and nectar composition in flowers appears to be an example of convergent coevolution between plants and pollinators on an intercontinental scale.

11.
Integr Comp Biol ; 60(5): 1297-1308, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184652

RESUMEN

The evolution of wing morphology among birds, and its functional consequences, remains an open question, despite much attention. This is in part because the connection between form and function is difficult to test directly. To address this deficit, in prior work, we used computational modeling and sensitivity analysis to interrogate the impact of altering wing aspect ratio (AR), camber, and Reynolds number on aerodynamic performance, revealing the performance landscapes that avian evolution has explored. In the present work, we used a dataset of three-dimensionally scanned bird wings coupled with the performance landscapes to test two hypotheses regarding the evolutionary diversification of wing morphology associated with gliding flight behavior: (1) gliding birds would exhibit higher wing AR and greater chordwise camber than their non-gliding counterparts; and (2) that two strategies for gliding flight exist, with divergent morphological conformations. In support of our first hypothesis, we found evidence of morphological divergence in both wing AR and camber between gliders and non-gliders, suggesting that wing morphology of birds that utilize gliding flight is under different selective pressures than the wings of non-gliding taxa. Furthermore, we found that these morphological differences also yielded differences in coefficient of lift measured both at the maximum lift to drag ratio and at minimum sinking speed, with gliding taxa exhibiting higher coefficient of lift in both cases. Minimum sinking speed was also lower in gliders than non-gliders. However, contrary to our hypothesis, we found that the maximum ratio of the coefficient of lift to the coefficient of drag differed between gliders and non-gliders. This may point to the need for gliders to maintain high lift capability for takeoff and landing independent of gliding performance or could be due to the divergence in flight styles among gliders, as not all gliders are predicted to optimize either quantity. However, direct evidence for the existence of two morphologically defined gliding flight strategies was equivocal, with only slightly stronger support for an evolutionary model positing separate morphological optima for these strategies than an alternative model positing a single peak. The absence of a clear result may be an artifact of low statistical power owing to a relatively small sample size of gliding flyers expected to follow the "aerial search" strategy.


Asunto(s)
Aves , Vuelo Animal , Alas de Animales , Animales , Fenómenos Biomecánicos , Modelos Biológicos
12.
Integr Comp Biol ; 60(5): 1188-1192, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220060

RESUMEN

The nascent field of evolutionary biomechanics seeks to understand how form begets function, and researchers have taken two tacks toward this goal: inferring form based on function (comparative biomechanics) or inferring function based on form (functional morphology). Each tack has strengths and weaknesses, which the other could improve. The symposium, "Melding modeling and morphology-integrating approaches to understand the evolution of form and function" sought to highlight research stitching together the two tacks. In this introduction to the symposium's issue, we highlight these works, discuss the challenges of interdisciplinary collaborations, and suggest possible avenues available to create new collaborations to create a unifying framework for evolutionary biomechanics.


Asunto(s)
Somatotipos , Animales , Evolución Biológica , Fenómenos Biomecánicos , Congresos como Asunto
13.
Integr Comp Biol ; 60(5): 1283-1296, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766844

RESUMEN

The physics of flight influences the morphology of bird wings through natural selection on flight performance. The connection between wing morphology and performance is unclear due to the complex relationships between various parameters of flight. In order to better understand this connection, we present a holistic analysis of gliding flight that preserves complex relationships between parameters. We use a computational model of gliding flight, along with analysis by uncertainty quantification, to (1) create performance landscapes of gliding based on output metrics (maximum lift-to-drag ratio, minimum gliding angle, minimum sinking speed, and lift coefficient at minimum sinking speed) and (2) predict what parameters of flight (chordwise camber, wing aspect ratio [AR], and Reynolds number) would differ between gliding and nongliding species of birds. We also examine performance based on the soaring strategy for possible differences in morphology within gliding birds. Gliding birds likely have greater ARs than non-gliding birds, due to the high sensitivity of AR on most metrics of gliding performance. Furthermore, gliding birds can use two distinct soaring strategies based on performance landscapes. First, maximizing distance traveled (maximizing lift-to-drag ratio and minimizing gliding angle) should result in wings with high ARs and middling-to-low wing chordwise camber. Second, maximizing lift extracted from updrafts should result in wings with middling ARs and high wing chordwise camber. Following studies can test these hypotheses using morphological measurements.


Asunto(s)
Aves , Vuelo Animal , Alas de Animales , Animales , Fenómenos Biomecánicos
14.
J Anim Ecol ; 86(2): 405-413, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28004849

RESUMEN

Because a broad spectrum of resource use allows species to persist in a wide range of habitat types, and thus permits them to occupy large geographical areas, and because broadly distributed species have access to more diverse resource bases, the resource breadth hypothesis posits that the diversity of resources used by organisms should be positively related with the extent of their geographic ranges. We investigated isotopic niche width in a small radiation of South American birds in the genus Cinclodes. We analysed feathers of 12 species of Cinclodes to test the isotopic version of the resource breadth hypothesis and to examine the correlation between isotopic niche breadth and morphology. We found a positive correlation between the widths of hydrogen and oxygen isotopic niches (which estimate breadth of elevational range) and widths of the carbon and nitrogen isotopic niches (which estimates the diversity of resources consumed, and hence of habitats used). We also found a positive correlation between broad isotopic niches and wing morphology. Our study not only supports the resource breadth hypothesis but it also highlights the usefulness of stable isotope analyses as tools in the exploration of ecological niches. It is an example of a macroecological application of stable isotopes. It also illustrates the importance of scientific collections in ecological studies.


Asunto(s)
Ecosistema , Passeriformes/anatomía & histología , Passeriformes/fisiología , Animales , Isótopos de Carbono/análisis , Deuterio/análisis , Plumas/química , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...