Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(4): 683-689, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571435

RESUMEN

Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.


Asunto(s)
Lesiones Precancerosas , Humanos , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Factores de Riesgo
2.
J Nutr ; 154(4): 1153-1164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246358

RESUMEN

BACKGROUND: Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE: The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS: We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS: We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS: Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Humanos , Ratones , Animales , Enfermedad de Crohn/patología , Hierro de la Dieta/efectos adversos , Colitis/inducido químicamente , Cicatrización de Heridas , Modelos Animales de Enfermedad , Hierro/farmacología , Mucosa Intestinal , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL
3.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986898

RESUMEN

Activating mutations in KRAS extensively reprogram cellular metabolism to support the continuous growth, proliferation, and survival of pancreatic tumors. Targeting these metabolic dependencies are promising approaches for the treatment of established tumors. However, metabolic reprogramming is required early during tumorigenesis to provide transformed cells selective advantage towards malignancy. Acinar cells can give rise to pancreatic tumors through acinar-to-ductal metaplasia (ADM). Dysregulation of pathways that maintain acinar homeostasis accelerate tumorigenesis. During ADM, acinar cells transdifferentiate to duct-like cells, a process driven by oncogenic KRAS. The metabolic reprogramming that is required for the transdifferentiation in ADM is unclear. We performed transcriptomic analysis on mouse acinar cells undergoing ADM and found metabolic programs are globally enhanced, consistent with the transition of a specialized cell to a less differentiated phenotype with proliferative potential. Indeed, we and others have demonstrated how inhibiting metabolic pathways necessary for ADM can prevent transdifferentiation and tumorigenesis. Here, we also find NRF2-target genes are differentially expressed during ADM. Among these, we focused on the increase in the gene coding for NADPH-producing enzyme, Glucose-6-phosphate dehydrogenase (G6PD). Using established mouse models of KrasG12D-driven pancreatic tumorigenesis and G6PD-deficiency, we find that mutant G6pd accelerates ADM and pancreatic intraepithelial neoplasia. Acceleration of cancer initiation with G6PD-deficiency is dependent on its NADPH-generating function in reactive oxygen species (ROS) management, as opposed to other outputs of the pentose phosphate pathway. Together, this work provides new insights into the function of metabolic pathways during early tumorigenesis.

4.
Adv Physiol Educ ; 47(4): 910-918, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769043

RESUMEN

The development of science writing and presentation skills is necessary for a successful science career. Too often these skills are not included in pre- or postsecondary science, technology, engineering, and mathematics (STEM) education, leading to a disconnect between high schoolers' expectations for college preparedness and the skills needed to succeed in college. The Young Scientist Program Summer Focus recruits high school students from historically marginalized backgrounds to participate in 8-week summer internships at Washington University in St. Louis. Students conduct hands-on biomedical research projects under the mentorship of Washington University scientists (graduate students, postdoctorates, lab staff). Here, we present the curriculum for a science communication course that accompanies this early research experience. The course is designed to strengthen students' communication skills (critical reading, writing, presenting, and peer review) through a combination of weekly lectures and active learning methods. It prepares students for the capstone of their summer internship: writing a scientific paper and presenting their results at a closing symposium. We administered pre- and postprogram surveys to four Summer Focus cohorts to determine whether the course met its learning objectives. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data. Thus, this course provides a successful model for introducing science literacy and communication skills that are necessary for any career in STEM. We provide a detailed outline of the course structure and content so that this training can be incorporated into any undergraduate and graduate research programs.NEW & NOTEWORTHY Strong communication skills are necessary for a successful scientific career. Here, we describe the curriculum for a science communication course designed to accompany high school students participating in a summer biomedical research program. The course aims to improve their scientific literacy and communication skills. Students learn to read and understand scientific literature, write a paper about their summer research project, present their results, and provide feedback to peers. We found significant improvements in students' self-confidence in reading, interpreting, and communicating scientific data after completing the course. This successful model serves as a guide for students participating in their first research experience and provides the skills for success in future science, technology, engineering, and mathematics education and careers. The curriculum presented here can be easily adapted for any research program, including undergraduate summer research experiences and graduate student laboratory rotations.


Asunto(s)
Curriculum , Instituciones Académicas , Humanos , Estudiantes , Comunicación , Escritura
5.
Nature ; 618(7963): 151-158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198494

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Asunto(s)
Glucosa , Neoplasias Pancreáticas , Ribosa , Microambiente Tumoral , Uridina , Animales , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Ribosa/metabolismo , Uridina/química , Glucosa/deficiencia , División Celular , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Uridina Fosforilasa/deficiencia , Uridina Fosforilasa/genética , Uridina Fosforilasa/metabolismo , Humanos
6.
Med ; 3(2): 87-89, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35590211

RESUMEN

Dietary interventions hold promise in cancer treatments. However, clinical application has been limited by a lack of mechanistic understanding of the metabolic effects. In this issue, Yang et al. use mouse models and isotope tracing to demonstrate that the ketogenic diet induces reductive stress and primes pancreatic tumors for chemotherapy.1.


Asunto(s)
Dieta Cetogénica , Neoplasias Pancreáticas , Animales , Carbohidratos , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico
7.
Elife ; 102021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34951587

RESUMEN

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Ácido Hialurónico/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Técnicas de Inactivación de Genes , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Hexosaminas/biosíntesis , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Trasplante Heterólogo
8.
EMBO Rep ; 22(9): e51806, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34309175

RESUMEN

Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.


Asunto(s)
Factor de Transcripción Activador 3 , Plasticidad de la Célula , Factor de Transcripción Activador 3/genética , Animales , Ciclo Celular , Diferenciación Celular , Metaplasia/genética , Ratones
9.
JCI Insight ; 6(14)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34138755

RESUMEN

Cancer cells reprogram cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to break down dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer. Here, we show a cell-autonomous dependency of autophagy for cell growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both sporadic and colitis-associated cancer models. Genetic and pharmacological inhibition of autophagy inhibits cell growth in colon cancer-derived cell lines and patient-derived enteroid models. Importantly, normal colon epithelium and patient-derived normal enteroid growth were not decreased following autophagy inhibition. To couple the role of autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic analysis was performed. We identified a critical role of autophagy to maintain mitochondrial metabolites for growth. Loss of mitochondrial recycling through inhibition of mitophagy hinders colon cancer cell growth. These findings have revealed a cell-autonomous role of autophagy that plays a critical role in regulating nutrient pools in vivo and in cell models, and it provides therapeutic targets for colon cancer.


Asunto(s)
Neoplasias Asociadas a Colitis/inmunología , Mitocondrias/metabolismo , Mitofagia/inmunología , Nutrientes/deficiencia , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/inmunología , Colitis/patología , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/patología , Colon/citología , Colon/inmunología , Colon/patología , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Metabolómica , Ratones , Ratones Transgénicos , Mitocondrias/inmunología , Mitofagia/efectos de los fármacos
10.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29467218

RESUMEN

In 1900, Adami speculated that a sequence of context-independent energetic and structural changes governed the reversion of differentiated cells to a proliferative, regenerative state. Accordingly, we show here that differentiated cells in diverse organs become proliferative via a shared program. Metaplasia-inducing injury caused both gastric chief and pancreatic acinar cells to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and re-enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. In kidney and liver regeneration and in human gastric metaplasia, mTORC1 also correlated with proliferation. In lysosome-defective Gnptab-/- mice, both metaplasia-associated gene expression changes and mTORC1-mediated proliferation were deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative using a sequential program with intervening checkpoints: (i) differentiated cell structure degradation; (ii) metaplasia- or progenitor-associated gene induction; (iii) cell cycle re-entry. We propose this program, which we term "paligenosis", is a fundamental process, like apoptosis, available to differentiated cells to fuel regeneration following injury.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Regeneración/fisiología , Células Acinares , Animales , Autofagosomas/fisiología , Ciclo Celular/fisiología , Transdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Células Principales Gástricas/patología , Tracto Gastrointestinal/patología , Expresión Génica , Humanos , Lisosomas , Metaplasia/genética , Ratones , Ratones Endogámicos C57BL , Fase S/fisiología , Factor de Transcripción SOX9/metabolismo , Estómago/lesiones , Estómago/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
11.
Gastroenterology ; 154(4): 839-843.e2, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29248442

RESUMEN

Spasmolytic polypeptide-expressing metaplasia (SPEM) develops in patients with chronic atrophic gastritis due to infection with Helicobacter pylori; it might be a precursor to intestinal metaplasia and gastric adenocarcinoma. Lineage tracing experiments of the gastric corpus in mice have not established whether SPEM derives from proliferating stem cells or differentiated, post-mitotic zymogenic chief cells in the gland base. We investigated whether differentiated cells can give rise to SPEM using a nongenetic approach in mice. Mice were given intraperitoneal injections of 5-fluorouracil, which blocked gastric cell proliferation, plus tamoxifen to induce SPEM. Based on analyses of molecular and histologic markers, we found SPEM developed even in the absence of cell proliferation. SPEM therefore did not arise from stem cells. In histologic analyses of gastric resection specimens from 10 patients with adenocarcinoma, we found normal zymogenic chief cells that were transitioning into SPEM cells only in gland bases, rather than the proliferative stem cell zone. Our findings indicate that SPEM can arise by direct reprogramming of existing cells-mainly of chief cells.


Asunto(s)
Adenocarcinoma/patología , Transdiferenciación Celular , Células Principales Gástricas/patología , Lesiones Precancerosas/patología , Neoplasias Gástricas/patología , Estómago/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/cirugía , Animales , Biomarcadores de Tumor/metabolismo , Linaje de la Célula , Proliferación Celular , Transdiferenciación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Principales Gástricas/efectos de los fármacos , Células Principales Gástricas/metabolismo , Fluorouracilo/farmacología , Gastrectomía , Mucosa Gástrica/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Metaplasia , Ratones , Péptidos/metabolismo , Fenotipo , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/cirugía , Estómago/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirugía , Factores de Tiempo
12.
EMBO J ; 36(16): 2318-2320, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28666994

Asunto(s)
Neoplasias , Estómago , Humanos
13.
Cell Rep ; 18(4): 991-1004, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122247

RESUMEN

Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1) is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.


Asunto(s)
Argininosuccinato Sintasa/genética , Glutamina/metabolismo , Serina/biosíntesis , Animales , Arginina/química , Argininosuccinato Sintasa/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/farmacología , Glucólisis/efectos de los fármacos , Humanos , Hidrolasas/farmacología , Proteínas de la Membrana/metabolismo , Metabolómica , Ratones , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosforilación/efectos de los fármacos , Polietilenglicoles/farmacología , Interferencia de ARN , Hormonas Tiroideas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide
14.
J Biol Chem ; 290(2): 706-15, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25381248

RESUMEN

The dominant paradigm for spectrin function is that (αß)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and ß-spectrins in Drosophila. Wild-type α-spectrin binds to both ß- and ßH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to ß-spectrin and reduces binding to ßH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.


Asunto(s)
Membrana Celular/genética , Drosophila melanogaster/genética , Espectrina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Mutación , Multimerización de Proteína , Espectrina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...