Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37759593

RESUMEN

The progression through the cell cycle phases is driven by cyclin-dependent kinases and cyclins as their regulatory subunits. As nuclear protein, the cell cycle inhibitor p21/CDKN1A arrests the cell cycle at the growth phase G1 by inhibiting the activity of cyclin-dependent kinases. The G1 phase correlates with increased cell size and cellular productivity. Here, we applied an optogenetic approach to control the subcellular localization of p21 and its nuclear functions. To generate light-controllable p21, appropriate fusions with the blue light switch cryptochrome 2/CIBN and the AsLOV-based light-inducible nuclear localization signal, LINuS, were used. Both systems, p21-CRY2/CIB1 and p21-LINuS, increased the amounts of cells arrested in the G1 phase correlating with the increased cell-specific productivity of the reporter-protein-secreted alkaline phosphatase. Varying the intervals of blue LED light exposure and the light dose enable the fine-tuning of the systems. Light-controllable p21 implemented in producer cell lines could be applied to steer the uncoupling of cell proliferation and cell cycle arrest at the G1 phase optimizing the production of biotherapeutic proteins.

2.
J Proteome Res ; 22(3): 768-789, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36763541

RESUMEN

Phosphorylation-dependent signal transduction plays an important role in regulating the functions and fate of skeletal muscle cells. Central players in the phospho-signaling network are the protein kinases AKT, S6K, and RSK as part of the PI3K-AKT-mTOR-S6K and RAF-MEK-ERK-RSK pathways. However, despite their functional importance, knowledge about their specific targets is incomplete because these kinases share the same basophilic substrate motif RxRxxp[ST]. To address this, we performed a multifaceted quantitative phosphoproteomics study of skeletal myotubes following kinase inhibition. Our data corroborate a cross talk between AKT and RAF, a negative feedback loop of RSK on ERK, and a putative connection between RSK and PI3K signaling. Altogether, we report a kinase target landscape containing 49 so far unknown target sites. AKT, S6K, and RSK phosphorylate numerous proteins involved in muscle development, integrity, and functions, and signaling converges on factors that are central for the skeletal muscle cytoskeleton. Whereas AKT controls insulin signaling and impinges on GTPase signaling, nuclear signaling is characteristic for RSK. Our data further support a role of RSK in glucose metabolism. Shared targets have functions in RNA maturation, stability, and translation, which suggests that these basophilic kinases establish an intricate signaling network to orchestrate and regulate processes involved in translation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa , Proteínas Quinasas S6 Ribosómicas 70-kDa
3.
Curr Opin Chem Biol ; 70: 102196, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988347

RESUMEN

Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.


Asunto(s)
Optogenética , Optogenética/tendencias , Investigación/tendencias
4.
Nat Commun ; 13(1): 2056, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440631

RESUMEN

Several tissues contain cells with multiple motile cilia that generate a fluid or particle flow to support development and organ functions; defective motility causes human disease. Developmental cues orient motile cilia, but how cilia are locked into their final position to maintain a directional flow is not understood. Here we find that the actin cytoskeleton is highly dynamic during early development of multiciliated cells (MCCs). While apical actin bundles become increasingly more static, subapical actin filaments are nucleated from the distal tip of ciliary rootlets. Anchorage of these subapical actin filaments requires the presence of microridge-like structures formed during MCC development, and the activity of Nonmuscle Myosin II. Optogenetic manipulation of Ezrin, a core component of the microridge actin-anchoring complex, or inhibition of Myosin Light Chain Kinase interfere with rootlet anchorage and orientation. These observations identify microridge-like structures as an essential component of basal body rootlet anchoring in MCCs.


Asunto(s)
Actinas , Cilios , Citoesqueleto de Actina , Cuerpos Basales , Cilios/fisiología , Citoesqueleto , Humanos
5.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069904

RESUMEN

Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.


Asunto(s)
Optogenética/métodos , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Humanos , Integrinas/metabolismo , Luz , Proteínas Tirosina Quinasas Receptoras/metabolismo
6.
Adv Biol (Weinh) ; 5(5): e2000196, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33045139

RESUMEN

The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.


Asunto(s)
Fitocromo B , Transducción de Señal , Animales , Diferenciación Celular , Luz , Optogenética , Fitocromo B/metabolismo
7.
Commun Biol ; 3(1): 253, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444788

RESUMEN

The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics. We identified the extended basophilic phosphosite motif RxRxxp[S/T]xxp[S/T] in various proteins including filamin-C (FLNc). Importantly, this extended motif, located in a unique insert in Ig-like domain 20 of FLNc, is doubly phosphorylated. The protein kinases responsible for this dual-site phosphorylation are Akt and PKCα. Proximity proteomics and interaction analysis identified filamin A-interacting protein 1 (FILIP1) as direct FLNc binding partner. FILIP1 binding induces filamin degradation, thereby negatively regulating its function. Here, dual-site phosphorylation of FLNc not only reduces FILIP1 binding, providing a mechanism to shield FLNc from FILIP1-mediated degradation, but also enables fast dynamics of FLNc necessary for its function as signaling adaptor in cross-striated muscle cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Filaminas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencias de Aminoácidos , Células HEK293 , Humanos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Proteolisis , Proteoma/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
8.
ACS Synth Biol ; 8(7): 1679-1684, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31185174

RESUMEN

Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.


Asunto(s)
Proteínas Portadoras/metabolismo , Criptocromos/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Células HeLa , Humanos , Luz , Optogenética/métodos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Commun Biol ; 2: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30652127

RESUMEN

Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix-OptoIntegrin system may serve as a blueprint for rendering matrix-receptor interactions amendable to precise control with light.


Asunto(s)
Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Optogenética/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Matriz Extracelular/efectos de la radiación , Células HEK293 , Células HeLa , Humanos , Luz , Células MCF-7 , Fitocromo B/metabolismo , Plásmidos/genética , Conformación Proteica/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transfección
10.
Cell Signal ; 42: 176-183, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29074139

RESUMEN

Focal adhesion kinase (FAK) integrates signaling from integrins, growth factor receptors and mechanical stress to control cell adhesion, motility, survival and proliferation. Here, we developed a single-component, photo-activatable FAK, termed optoFAK, by using blue light-induced oligomerization of cryptochrome 2 (CRY2) to activate FAK-CRY2 fusion proteins. OptoFAK functions uncoupled from physiological stimuli and activates downstream signaling rapidly and reversibly upon blue light exposure. OptoFAK stimulates SRC creating a positive feedback loop on FAK activation, facilitating phosphorylation of paxillin and p130Cas in adherent cells. In detached cells or in mechanically stressed adherent cells, optoFAK is autophosphorylated upon exposure to blue light, however, downstream signaling is hampered indicating that the accessibility to these substrates is disturbed. OptoFAK may prove to be a useful tool to study the biological function of FAK in growth factor and integrin signaling, tension-mediated focal adhesion maturation or anoikis and could additionally serve as test system for kinase inhibitors.


Asunto(s)
Criptocromos/metabolismo , Retroalimentación Fisiológica , Quinasa 1 de Adhesión Focal/metabolismo , Optogenética/métodos , Transducción de Señal , Adhesión Celular , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo , Criptocromos/genética , Quinasa 1 de Adhesión Focal/genética , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Luz , Paxillin/genética , Paxillin/metabolismo , Fosforilación , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Mecánico , Transfección
11.
Sci Adv ; 3(8): e1700475, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28819643

RESUMEN

Spatiotemporal control is a common mechanism that modulates activity and function of signal transducers in the signaling network. We identified acetylation of CNK1 (connector enhancer of kinase suppressor of Ras-1) as a late step in the activation of CNK1 signaling, accompanied with prolonged stimulation of extracellular signal-regulated kinase (ERK). We identified the acetyltransferase CREB (cyclic adenosine 3',5'-monophosphate response element-binding protein)-binding protein and the deacetylase SIRT2 (sirtuin type 2) as novel binding partners of CNK1, modulating the acetylation state of CNK1. Acetylation of CNK1 at position Lys414 located in the pleckstrin homology domain drives membrane localization of CNK1 in growth factor-stimulated cells. Inhibition of ERK signaling abolishes CNK1 acetylation. Cosmic database search identified CNK1 mutants at position Arg426 near the acetylation site in several human tumor types. These mutants show constitutive acetylation and membrane localization. CNK1 mutants substituting Arg426, the acetylation mimetic mutant CNK1-K414Q, and membrane-anchored CNK1 mutants all interact with the protein kinase CRAF and stimulate ERK-dependent cell proliferation and cell migration. In RAS-transformed cells, CNK1 is acetylated and membrane-bound and drives cell proliferation. Thus, growth factor-stimulated ERK signaling induces CNK1 acetylation, and acetylated CNK1 promotes ERK signaling, demonstrating a novel function of CNK1 as positive feedback regulator of the RAF/MEK (mitogen-activated protein kinase kinase)/ERK pathway. In addition, acetylation of CNK1 is an important step in oncogenic signaling, promoting cell proliferation and migration.


Asunto(s)
Membrana Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Quinasas raf/metabolismo , Acetilación , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Biológicos , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas ras/metabolismo
12.
Methods Mol Biol ; 1596: 257-270, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293892

RESUMEN

Optogenetic approaches enable the control of biological processes in a time- and space-resolved manner. These light-based methods are noninvasive and by using light as sole activator minimize side effects in contrast to chemical inducers. Here, we provide a protocol for the targeted control of the activity of protein kinases in mammalian cells based on the photoreceptor cryptochrome 2 (CRY2) of Arabidopsis thaliana and its interaction partner CIB1. Blue light (450 nm)-induced binding of CRY2 to CIB1 allows the recruitment of a chimeric cytosolic protein kinase AKT1 to the plasma membrane accompanied with stimulation of its kinase activity. This protocol comprises the transient and stable implementation of the light-regulated system into mammalian cells and its stimulation by blue light-emitting diodes (450 nm) irradiation as well as analysis of the light-activated AKT1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Criptocromos/metabolismo , Proteínas Quinasas/metabolismo , Animales , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Luz , Células MCF-7 , Mamíferos/metabolismo , Optogenética/métodos , Canales de Potasio/metabolismo , Unión Proteica/fisiología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 280-292, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27845208

RESUMEN

Cells receive many different environmental clues to which they must adapt accordingly. Therefore, a complex signal transduction network has evolved. Cellular signal transduction is a highly dynamic process, in which the specific outcome is a result of the exact spatial and temporal resolution of single sub-events. While conventional techniques, like chemical inducer systems, have led to a sound understanding of the architecture of signal transduction pathways, the spatiotemporal aspects were often impossible to resolve. Optogenetics, based on genetically encoded light-responsive proteins, has the potential to revolutionize manipulation of signal transduction processes. Light can be easily applied with highest precision and minimal invasiveness. This review focuses on examples of optogenetic systems which were generated and applied to manipulate non-neuronal mammalian signaling processes at various stages of signal transduction, from cell membrane through cytoplasm to nucleus. Further, the future of optogenetic signaling will be discussed.


Asunto(s)
Luz , Mamíferos/metabolismo , Optogenética/métodos , Transducción de Señal , Animales , Humanos , Proteínas de la Membrana/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 89-100, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27769899

RESUMEN

Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1S22D, the oncogenic mutant CNK1S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation.


Asunto(s)
Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Proto-Oncogénicas c-akt/genética , Motivo alfa Estéril , Adhesión Celular , Movimiento Celular , Proliferación Celular , Bases de Datos Genéticas , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Imitación Molecular , Mutación , Fosforilación , Regiones Promotoras Genéticas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
15.
Mol Cell Proteomics ; 16(3): 346-367, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28028127

RESUMEN

The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Proteína Quinasa C/metabolismo , Proteómica/métodos , Sarcómeros/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular , Línea Celular , Estimulación Eléctrica , Filaminas/metabolismo , Ratones , Mioblastos/metabolismo , Fosforilación , Mapas de Interacción de Proteínas
16.
Sci Rep ; 6: 38155, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901111

RESUMEN

Scaffold proteins such as the multidomain protein CNK1 orchestrate the signalling network by integrating and controlling the underlying pathways. Using an optogenetic approach to stimulate CNK1 uncoupled from upstream effectors, we identified selective clusters of CNK1 that either stimulate RAF-MEK-ERK or AKT signalling depending on the light intensity applied. OptoCNK1 implemented in MCF7 cells induces differentiation at low light intensity stimulating ERK activity whereas stimulation of AKT signalling by higher light intensity promotes cell proliferation. CNK1 clustering in response to increasing EGF concentrations revealed that CNK1 binds to RAF correlating with ERK activation at low EGF dose. At higher EGF dose active AKT binds to CNK1 and phosphorylates and inhibits RAF. Knockdown of CNK1 protects CNK1 from this AKT/RAF crosstalk. In C2 skeletal muscle cells CNK1 expression is induced with the onset of differentiation. Hence, AKT-bound CNK1 counteracts ERK stimulation in differentiated but not in proliferating cells. Ectopically expressed CNK1 facilitates C2 cell differentiation and knockdown of CNK1 impaired the transcriptional network underlying C2 cell differentiation. Thus, CNK1 expression, CNK1 clustering and the thereto related differential signalling processes decide on proliferation and differentiation in a cell type- and cell stage-dependent manner by orchestrating AKT and RAF signalling.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-raf/genética , Animales , Línea Celular , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Ratones , Optogenética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Interferencia de ARN , Transducción de Señal/genética
17.
Sci Rep ; 6: 23713, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025703

RESUMEN

Here, we applied optoRAF, an optogenetic tool for light-controlled clustering and activation of RAF proteins that mimics the natural occurring RAS-mediated dimerization. This versatile tool allows studying the effect on BRAF and CRAF homodimer- as well as heterodimer-induced RAF signaling. Vemurafenib and dabrafenib are two clinically approved inhibitors for BRAF that efficiently suppress the kinase activity of oncogenic BRAF (V600E). However in wild-type BRAF expressing cells, BRAF inhibitors can exert paradoxical activation of wild-type CRAF. Using optoRAF, vemurafenib was identified as paradoxical activator of BRAF and CRAF homo- and heterodimers. Dabrafenib enhanced activity of light-stimulated CRAF at low dose and inhibited CRAF signaling at high dose. Moreover, dabrafenib increased the protein level of CRAF proteins but not of BRAF proteins. Increased CRAF levels correlate with elevated RAF signaling in a dabrafenib-dependent manner, independent of light activation.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Inducción Enzimática/efectos de la radiación , Células HEK293 , Células HeLa , Humanos , Imidazoles/farmacología , Indoles/farmacología , Optogenética , Oximas/farmacología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Sulfonamidas/farmacología , Vemurafenib
18.
Biochim Biophys Acta ; 1853(11 Pt A): 2847-55, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319181

RESUMEN

Scaffold proteins are multidomain proteins without enzymatic function that play a central role in coordinating signaling processes. The scaffold protein CNK1 interacts with pathway-specific signaling proteins and thereby regulates these respective pathways. Here, we revealed tyrosine phosphorylation as a critical regulation mechanism to control the function of CNK1. We identified Tyr 26 as a PDGF-induced and, additionally, Tyr 519 and Tyr 665 as SRC-induced tyrosine phosphorylation sites. Phosphomimetic mutants indicate that phosphorylation of Tyr 519 recruits CNK1 to the nucleus and additional phosphorylation of Tyr 26 enables CNK1 to promote SRE-dependent gene expression. Contrary, mutants preventing tyrosine phosphorylation promote matrix metalloproteinase MMP14 promoter activity. CNK1-driven cell proliferation partially depends on its tyrosine phosphorylation. Upon PDGF stimulation, CNK1 is recruited to the plasma membrane mediated by SRC. Knock down of CNK1 prevents PDGF-induced SRE-dependent gene expression, MMP14 promoter activity and cell proliferation. Thus, tyrosine phosphorylation is an important mechanism to control the subcellular localization of CNK1 and its distinct biological functions.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metaloproteinasa 14 de la Matriz/biosíntesis , Regiones Promotoras Genéticas/fisiología , Familia-src Quinasas/metabolismo , Membrana Celular/enzimología , Membrana Celular/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloproteinasa 14 de la Matriz/genética , Mutación , Fosforilación/fisiología , Transporte de Proteínas/fisiología , Tirosina/genética , Tirosina/metabolismo , Familia-src Quinasas/genética
19.
Biotechnol J ; 10(2): 273-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25216399

RESUMEN

Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.


Asunto(s)
Optogenética/métodos , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Criptocromos/química , Criptocromos/metabolismo , Humanos , Modelos Moleculares , Fitocromo B/química , Fitocromo B/metabolismo
20.
Biochim Biophys Acta ; 1854(6): 632-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25219547

RESUMEN

The prostate-specific G-protein-coupled receptor 1 (PSGR1) is an olfactory receptor specifically expressed in the prostate gland. PSGR1 expression is elevated both in benign prostatic hyperplasia tissue and in prostate cancer. Stimulation of PSGR1 by the odorant ß-ionone leads to an increase in the intracellular Ca(2+) concentration, activation of mitogen-activated protein (MAP) kinases and a decrease in prostate cancer cell proliferation. To further extend our knowledge about PSGR1 signaling in prostate cancer cells, we performed a quantitative phosphoproteomics study using stable isotope labeling by amino acids in cell culture and mass spectrometry. We report 51 differentially regulated phosphorylation sites in 24 proteins with functions in cytoskeletal remodeling, signaling and ion transport. Activation of PSGR1 evoked an increase in intracellular pH mediated by the sodium/hydrogen exchanger NHE1. Furthermore, we report the protein tyrosine kinase Pyk2 as a central effector of PSGR1 signaling cascades in LNCaP cells. Our data show that phosphorylation of p38 MAP kinase is triggered by Pyk2. In addition, we confirmed dephosphorylation of the tumor suppressor protein N-myc downstream regulated gene 1 (NDRG1) at Ser330 downstream of Pyk2. Since NDRG1 impacts oncogenic signaling pathways interfering with tumor progression, we suggest that the Pyk2-NDRG1 axis is possibly involved in conveying the anti-proliferative effect of ß-ionone in prostate cancer cells. This article is part of a Special Issue entitled: Medical Proteomics.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 2 de Adhesión Focal/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de Neoplasias/genética , Norisoprenoides/farmacología , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Neoplasias de la Próstata/genética , Receptores Odorantes/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...