Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(20): 2970-2981, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37782650

RESUMEN

Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the pmrE and arnBCADTEF loci, with ArnT ultimately transferring the amino sugar from undecaprenyl-phospho-4-deoxy-4-amino-l-arabinose (C55P-Ara4N) to lipid A. However, Ara4N is N-formylated prior to its transfer to undecaprenyl-phosphate by ArnC, requiring a deformylase activity downstream in the pathway to generate the final C55P-Ara4N donor. Here, we show that deletion of the arnD gene in an Escherichia coli mutant that constitutively expresses the arnBCADTEF operon leads to accumulation of the formylated ArnC product undecaprenyl-phospho-4-deoxy-4-formamido-l-arabinose (C55P-Ara4FN), suggesting that ArnD is the downstream deformylase. Purification of Salmonella typhimurium ArnD (stArnD) shows that it is membrane-associated. We present the crystal structure of stArnD revealing a NodB homology domain structure characteristic of the metal-dependent carbohydrate esterase family 4 (CE4). However, ArnD displays several distinct features: a 44 amino acid insertion, a C-terminal extension in the NodB fold, and sequence divergence in the five motifs that define the CE4 family, suggesting that ArnD represents a new family of carbohydrate esterases. The insertion is responsible for membrane association as its deletion results in a soluble ArnD variant. The active site retains a metal coordination H-H-D triad, and in the presence of Co2+ or Mn2+, purified stArnD efficiently deformylates C55P-Ara4FN confirming its role in Ara4N biosynthesis. Mutations D9N and H233Y completely inactivate stArnD implicating these two residues in a metal-assisted acid-base catalytic mechanism.


Asunto(s)
Lípido A , Polimixinas , Polimixinas/farmacología , Polimixinas/metabolismo , Lípido A/metabolismo , Arabinosa/metabolismo , Amino Azúcares/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Carbohidratos , Proteínas Bacterianas/química
2.
Sci Rep ; 9(1): 3947, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850651

RESUMEN

UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the first step of lipid A biosynthesis, the transfer of an R-3-hydroxyacyl chain from its acyl carrier protein (ACP) to the 3-OH group of UDP-GlcNAc. Essential in the growth of Gram-negative bacteria, LpxA is a logical target for antibiotics design. A pentadecapeptide (Peptide 920) with high affinity towards LpxA was previously identified in a phage display library. Here we created a small library of systematically designed peptides with the length of four to thirteen amino acids using Peptide 920 as a scaffold. The concentrations of these peptides at which 50% of LpxA is inhibited (IC50) range from 50 nM to >100 µM. We determined the crystal structure of E. coli LpxA in a complex with a potent inhibitor. LpxA-inhibitor interaction, solvent model and all contributing factors to inhibitor efficacy were well resolved. The peptide primarily occludes the ACP binding site of LpxA. Interactions between LpxA and the inhibitor are different from those in the structure of Peptide 920. The inhibitory peptide library and the crystal structure of inhibitor-bound LpxA described here may further assist in the rational design of inhibitors with antimicrobial activity that target LpxA and potentially other acyltransferases.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Péptidos/farmacología , Uridina Difosfato N-Acetilglucosamina/antagonistas & inhibidores , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Concentración 50 Inhibidora , Lípido A/antagonistas & inhibidores , Lípido A/biosíntesis , Biblioteca de Péptidos , Péptidos/química
3.
J Mol Biol ; 430(21): 4036-4048, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30092253

RESUMEN

During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 ß strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.


Asunto(s)
Dioxigenasas/química , Compuestos Ferrosos/química , Ácidos Cetoglutáricos/química , Oxigenasas de Función Mixta/química , Modelos Moleculares , Oxígeno/química , Secuencia de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Fenómenos Bioquímicos , Dioxigenasas/metabolismo , Compuestos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Oxígeno/metabolismo
4.
Biochem Biophys Res Commun ; 452(3): 789-94, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25204504

RESUMEN

The lipopolysaccharide (LPS) isolated from certain important Gram-negative pathogens including a human pathogen Yersinia pestis and opportunistic pathogens Burkholderia mallei and Burkholderia pseudomallei contains d-glycero-d-talo-oct-2-ulosonic acid (Ko), an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Kdo 3-hydroxylase (KdoO), a Fe(2+)/α-KG/O2 dependent dioxygenase from Burkholderia ambifaria and Yersinia pestis is responsible for Ko formation with Kdo2-lipid A as a substrate, but in which stage KdoO functions during the LPS biosynthesis has not been established. Here we purify KdoO from B. ambifaria (BaKdoO) to homogeneity for the first time and characterize its substrates. BaKdoO utilizes Kdo2-lipid IVA or Kdo2-lipid A as a substrate, but not Kdo-lipid IVAin vivo as well as in vitro and Kdo-(Hep)kdo-lipid A in vitro. These data suggest that KdoO is an inner core assembly enzyme that functions after the Kdo-transferase KdtA but before the heptosyl-transferase WaaC enzyme during the Ko-containing LPS biosynthesis.


Asunto(s)
Burkholderia/metabolismo , Glucolípidos/biosíntesis , Lípido A/análogos & derivados , Lipopolisacáridos/biosíntesis , Oxigenasas de Función Mixta/metabolismo , Burkholderia/genética , Cationes Bivalentes , Expresión Génica , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hierro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Lípido A/biosíntesis , Oxigenasas de Función Mixta/genética , Oxígeno/metabolismo , Especificidad por Sustrato , Transferasas/genética , Transferasas/metabolismo
5.
Biochemistry ; 53(8): 1250-62, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24479701

RESUMEN

There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified. A novel substrate for WaaG was isolated from ΔwaaG E. coli overexpressing the lipid A phosphatase lpxE and the lipid A late acyltransferase lpxM. The action of lpxE and lpxM in the ΔwaaG background yielded heptose2-1-dephospho Kdo2-lipid A, a 1-dephosphorylated hexa-acylated lipid A with the inner core sugars that is easily isolated by organic extraction. Using this structurally defined acceptor and commercially available sugar nucleotides, each outer core glycosyltransferases was assayed in vitro. We show that WaaG and WaaB add a glucose and galactose sequentially to heptose2-1-dephospho Kdo2-lipid A. E. coli K-12 WaaO and S. typhimurium WaaI add a galactose to the WaaG/WaaB product but can also add a galactose to the WaaG product directly without the branched core sugar added by WaaB. Both WaaI and WaaO require divalent metal ions for optimal activity; however, WaaO, unlike WaaI, can add several glucose residues to its lipid acceptor. Using the product of WaaG, WaaB, and WaaI, we show that S. typhimurium WaaJ and WaaK transfer a glucose and N-acetylglucosamine, respectively, to yield the full outer core. This is the first demonstration of the in vitro assembly of the outer core of the lipopolysaccharide using defined lipid A-oligosaccharide acceptors and sugar donors.


Asunto(s)
Escherichia coli K12/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Salmonella typhimurium/metabolismo , Biocatálisis , Escherichia coli K12/enzimología , Galactosa/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Salmonella typhimurium/enzimología , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
Nature ; 505(7483): 422-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24196711

RESUMEN

Acyl carrier protein represents one of the most highly conserved proteins across all domains of life and is nature's way of transporting hydrocarbon chains in vivo. Notably, type II acyl carrier proteins serve as a crucial interaction hub in primary cellular metabolism by communicating transiently between partner enzymes of the numerous biosynthetic pathways. However, the highly transient nature of such interactions and the inherent conformational mobility of acyl carrier protein have stymied previous attempts to visualize structurally acyl carrier protein tied to an overall catalytic cycle. This is essential to understanding a fundamental aspect of cellular metabolism leading to compounds that are not only useful to the cell, but also of therapeutic value. For example, acyl carrier protein is central to the biosynthesis of the lipid A (endotoxin) component of lipopolysaccharides in Gram-negative microorganisms, which is required for their growth and survival, and is an activator of the mammalian host's immune system, thus emerging as an important therapeutic target. During lipid A synthesis (Raetz pathway), acyl carrier protein shuttles acyl intermediates linked to its prosthetic 4'-phosphopantetheine group among four acyltransferases, including LpxD. Here we report the crystal structures of three forms of Escherichia coli acyl carrier protein engaging LpxD, which represent stalled substrate and liberated products along the reaction coordinate. The structures show the intricate interactions at the interface that optimally position acyl carrier protein for acyl delivery and that directly involve the pantetheinyl group. Conformational differences among the stalled acyl carrier proteins provide the molecular basis for the association-dissociation process. An unanticipated conformational shift of 4'-phosphopantetheine groups within the LpxD catalytic chamber shows an unprecedented role of acyl carrier protein in product release.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Biocatálisis , Escherichia coli/química , Lípido A/biosíntesis , Aciltransferasas/química , Aciltransferasas/metabolismo , Cristalografía por Rayos X , Hidrólisis , Lípido A/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica
7.
J Biol Chem ; 288(50): 35812-23, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24189069

RESUMEN

25-Hydroxycholesterol (25OHC) is an enzymatically derived oxidation product of cholesterol that modulates lipid metabolism and immunity. 25OHC is synthesized in response to interferons and exerts broad antiviral activity by as yet poorly characterized mechanisms. To gain further insights into the basis for antiviral activity, we evaluated time-dependent responses of the macrophage lipidome and transcriptome to 25OHC treatment. In addition to altering specific aspects of cholesterol and sphingolipid metabolism, we found that 25OHC activates integrated stress response (ISR) genes and reprograms protein translation. Effects of 25OHC on ISR gene expression were independent of liver X receptors and sterol-response element-binding proteins and instead primarily resulted from activation of the GCN2/eIF2α/ATF4 branch of the ISR pathway. These studies reveal that 25OHC activates the integrated stress response, which may contribute to its antiviral activity.


Asunto(s)
Hidroxicolesteroles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Animales , Células de la Médula Ósea/citología , Ésteres del Colesterol/metabolismo , Perfilación de la Expresión Génica , Hidroxicolesteroles/metabolismo , Receptores X del Hígado , Macrófagos/citología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Muromegalovirus/fisiología , Receptores Nucleares Huérfanos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esfingolípidos/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores
8.
Biochim Biophys Acta ; 1831(7): 1250-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24046865

RESUMEN

The lipid A component of lipopolysaccharide from the nitrogen-fixing plant endosymbiont, Rhizobium etli, is structurally very different from that found in most enteric bacteria. The lipid A from free-living R. etli is structurally heterogeneous and exists as a mixture of species which are either pentaacylated or tetraacylated. In contrast, the lipid A from R. etli bacteroids is reported to consist exclusively of tetraacylated lipid A species. The tetraacylated lipid A species in both cases lack a beta-hydroxymyristoyl chain at the 3-position of lipid A. Here, we show that the lipid A modification enzyme responsible for 3-O deacylation in R. etli is a homolog of the PagL protein originally described in Salmonella enterica sv. typhimurium. In contrast to the PagL proteins described from other species, R. etli PagL displays a calcium dependency. To determine the importance of the lipid A modification catalyzed by PagL, we isolated and characterized a R. etli mutant deficient in the pagL gene. Mass spectrometric analysis confirmed that the mutant strain was exclusively tetraacylated and radiochemical analysis revealed that 3-O deacylase activity was absent in membranes prepared from the mutant. The R. etli mutant was not impaired in its ability to form nitrogen-fixing nodules on Phaseolus vulgaris but it displayed slower nodulation kinetics relative to the wild-type strain. The lipid A modification catalyzed by R. etli PagL, therefore, is not required for nodulation but may play other roles such as protecting bacterial endosymbionts from plant immune responses during infection.


Asunto(s)
Calcio/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lípido A/metabolismo , Phaseolus/microbiología , Rhizobium etli/enzimología , Rhizobium etli/fisiología , Secuencia de Aminoácidos , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Eliminación de Gen , Datos de Secuencia Molecular , Mutación , Fijación del Nitrógeno , Phaseolus/fisiología , Nodulación de la Raíz de la Planta , Rhizobium etli/química , Rhizobium etli/genética , Salmonella typhimurium/enzimología , Alineación de Secuencia , Simbiosis
9.
Mol Microbiol ; 89(1): 52-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23659637

RESUMEN

The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg(2+) concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR(+) cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5' end was found in both cases. In vitro transcription and the behaviour of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Lipopolisacáridos/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Interferente Pequeño/genética , Factor sigma/genética , Factor sigma/metabolismo
10.
Biochemistry ; 52(13): 2280-90, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23464738

RESUMEN

The sixth step in the lipid A biosynthetic pathway involves phosphorylation of the tetraacyldisaccharide-1-phosphate (DSMP) intermediate by the cytosol-facing inner membrane kinase LpxK, a member of the P-loop-containing nucleoside triphosphate (NTP) hydrolase superfamily. We report the kinetic characterization of LpxK from Aquifex aeolicus and the crystal structures of LpxK in complex with ATP in a precatalytic binding state, the ATP analogue AMP-PCP in the closed catalytically competent conformation, and a chloride anion revealing an inhibitory conformation of the nucleotide-binding P-loop. We demonstrate that LpxK activity in vitro requires the presence of a detergent micelle and formation of a ternary LpxK-ATP/Mg(2+)-DSMP complex. Using steady-state kinetics, we have identified crucial active site residues, leading to the proposal that the interaction of D99 with H261 acts to increase the pKa of the imidazole moiety, which in turn serves as the catalytic base to deprotonate the 4'-hydroxyl of the DSMP substrate. The fact that an analogous mechanism has not yet been observed for other P-loop kinases highlights LpxK as a distinct member of the P-loop kinase family, a notion that is also reflected through its localization at the membrane, lipid substrate, and overall structure.


Asunto(s)
Bacterias/enzimología , Lípido A/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Detergentes/metabolismo , Cinética , Magnesio/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación Puntual , Conformación Proteica
11.
J Biol Chem ; 288(13): 9216-25, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23413030

RESUMEN

Lipopolysaccharide (LPS; endotoxin) is an essential component of the outer monolayer of nearly all Gram-negative bacteria. LPS is composed of a hydrophobic anchor, known as lipid A, an inner core oligosaccharide, and a repeating O-antigen polysaccharide. In nearly all species, the first sugar bridging the hydrophobic lipid A and the polysaccharide domain is 3-deoxy-d-manno-octulosonic acid (Kdo), and thus it is critically important for LPS biosynthesis. Modifications to lipid A have been shown to be important for resistance to antimicrobial peptides as well as modulating recognition by the mammalian innate immune system. Therefore, lipid A derivatives have been used for development of vaccine strains and vaccine adjuvants. One derivative that has yet to be studied is 8-amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N), which is found exclusively in marine bacteria of the genus Shewanella. Using bioinformatics, a candidate gene cluster for Kdo8N biosynthesis was identified in Shewanella oneidensis. Expression of these genes recombinantly in Escherichia coli resulted in lipid A containing Kdo8N, and in vitro assays confirmed their proposed enzymatic function. Both the in vivo and in vitro data were consistent with direct conversion of Kdo to Kdo8N prior to its incorporation into the Kdo8N-lipid A domain of LPS by a metal-dependent oxidase followed by a glutamate-dependent aminotransferase. To our knowledge, this oxidase is the first enzyme shown to oxidize an alcohol using a metal and molecular oxygen, not NAD(P)(+). Creation of an S. oneidensis in-frame deletion strain showed increased sensitivity to the cationic antimicrobial peptide polymyxin as well as bile salts, suggesting a role in outer membrane integrity.


Asunto(s)
Lipopolisacáridos/química , Shewanella/metabolismo , Azúcares Ácidos/química , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía en Capa Delgada/métodos , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Genómica , Ácido Glutámico/química , Lípido A/metabolismo , Lípidos/química , Espectrometría de Masas/métodos , Modelos Químicos , Oxígeno/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Azúcares Ácidos/metabolismo
12.
Infect Immun ; 81(4): 1172-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23357387

RESUMEN

Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.


Asunto(s)
Lípido A/metabolismo , Factores de Virulencia/metabolismo , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidad , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Dosificación Letal Mediana , Lípido A/química , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Peste/microbiología , Peste/mortalidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Supervivencia , Virulencia , Factores de Virulencia/química , Yersinia pestis/genética
13.
J Biol Chem ; 288(8): 5475-86, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23316051

RESUMEN

LpxC, the deacetylase that catalyzes the second and committed step of lipid A biosynthesis in Escherichia coli, is an essential enzyme in virtually all gram-negative bacteria and is one of the most promising antibiotic targets for treatment of multidrug-resistant gram-negative infections. Despite the rapid development of LpxC-targeting antibiotics, the potential mechanisms of bacterial resistance to LpxC inhibitors remain poorly understood. Here, we report the isolation and biochemical characterization of spontaneously arising E. coli mutants that are over 200-fold more resistant to LpxC inhibitors than the wild-type strain. These mutants have two chromosomal point mutations that account for resistance additively and independently; one is in fabZ, a dehydratase in fatty acid biosynthesis; the other is in thrS, the Thr-tRNA ligase. For both enzymes, the isolated mutations result in reduced enzymatic activities in vitro. Unexpectedly, we observed a decreased level of LpxC in bacterial cells harboring fabZ mutations in the absence of LpxC inhibitors, suggesting that the biosyntheses of fatty acids and lipid A are tightly regulated to maintain a balance between phospholipids and lipid A. Additionally, we show that the mutation in thrS slows protein production and cellular growth, indicating that reduced protein biosynthesis can confer a suppressive effect on inhibition of membrane biosynthesis. Altogether, our studies reveal a previously unrecognized mechanism of antibiotic resistance by rebalancing cellular homeostasis.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/fisiología , Escherichia coli/genética , Mutación , Amidohidrolasas/antagonistas & inhibidores , Cromatografía Liquida/métodos , Escherichia coli/enzimología , Ácidos Grasos/metabolismo , Homeostasis , Lípido A/metabolismo , Lípidos/química , Lipopolisacáridos/metabolismo , Espectrometría de Masas/métodos , Modelos Químicos , Fosfolípidos/metabolismo , Mutación Puntual , ARN/metabolismo , Treonina-ARNt Ligasa/metabolismo
14.
Cell ; 151(1): 138-52, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021221

RESUMEN

Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.


Asunto(s)
Aterosclerosis/inmunología , Colesterol/biosíntesis , Desmosterol/metabolismo , Células Espumosas/metabolismo , Metabolismo de los Lípidos , Transcriptoma , Animales , Aterosclerosis/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Células Espumosas/inmunología , Técnicas de Silenciamiento del Gen , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
15.
Nat Struct Mol Biol ; 19(11): 1132-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23042606

RESUMEN

Enzymes in lipid metabolism acquire and deliver hydrophobic substrates and products from within lipid bilayers. The structure at 2.55 Å of one isozyme of a constitutive enzyme in lipid A biosynthesis, LpxI from Caulobacter crescentus, has a novel fold. Two domains close around a completely sequestered substrate, UDP-2,3-diacylglucosamine, and open to release products either to the neighboring enzyme in a putative multienzyme complex or to the bilayer. Mutation analysis identifies Asp225 as key to Mg(2+)-catalyzed diphosphate hydrolysis. These structures provide snapshots of the enzymatic synthesis of a critical lipid A precursor.


Asunto(s)
Caulobacter crescentus/enzimología , Lípido A/biosíntesis , Modelos Moleculares , Conformación Proteica , Pirofosfatasas/química , Secuencia de Aminoácidos , Cristalización , Análisis Mutacional de ADN , Glucolípidos/metabolismo , Isoenzimas/química , Espectrometría de Masas , Datos de Secuencia Molecular , Estructura Molecular , Pliegue de Proteína , Pirofosfatasas/genética , Ultracentrifugación
16.
Proc Natl Acad Sci U S A ; 109(41): 16504-9, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22988102

RESUMEN

Depending on growth phase and culture conditions, cardiolipin (CL) makes up 5-15% of the phospholipids in Escherichia coli with the remainder being primarily phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). In E. coli, the cls and ybhO genes (renamed clsA and clsB, respectively) each encode a CL synthase (Cls) that catalyzes the condensation of two PG molecules to form CL and glycerol. However, a ΔclsAB mutant still makes CL in the stationary phase, indicating the existence of additional Cls. We identified a third Cls encoded by ymdC (renamed clsC). ClsC has sequence homology with ClsA and ClsB, which all belong to the phospholipase D superfamily. The ΔclsABC mutant lacks detectible CL regardless of growth phase or growth conditions. CL can be restored to near wild-type levels in stationary phase in the triple mutant by expressing either clsA or clsB. Expression of clsC alone resulted in a low level of CL in the stationary phase, which increased to near wild-type levels by coexpression of its neighboring gene, ymdB. CL synthesis by all Cls is increased with increasing medium osmolarity during logarithmic growth and in stationary phase. However, only ClsA contributes detectible levels of CL at low osmolarity during logarithmic growth. Mutation of the putative catalytic motif of ClsC prevents CL formation. Unlike eukaryotic Cls (that use PG and CDP-diacylglycerol as substrates) or ClsA, the combined YmdB-ClsC used PE as the phosphatidyl donor to PG to form CL, which demonstrates a third and unique mode for CL synthesis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Secuencia de Aminoácidos , Cardiolipinas/metabolismo , Cromatografía Liquida , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
17.
Mol Microbiol ; 86(3): 611-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22966934

RESUMEN

Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Francisella/enzimología , Francisella/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Lípido A/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular , Femenino , Francisella/genética , Francisella/metabolismo , Francisella tularensis/enzimología , Francisella tularensis/genética , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Alineación de Secuencia , Virulencia
18.
Microbiology (Reading) ; 158(Pt 10): 2577-2584, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22837302

RESUMEN

Clostridium botulinum has been classified into four groupings (groups I to IV) based on physiological characteristics and 16S rRNA sequencing. We have examined the lipid compositions of 11 representative strains of C. botulinum and a strain of Clostridium sporogenes by 2D-TLC and by MS. All strains contained phosphatidylglycerol (PG), cardiolipin (CL) and phosphatidylethanolamine (PE) in both the all-acyl and the alk-1'-enyl (plasmalogen) forms. Five strains in proteolytic group I, which are related to C. sporogenes, contained varying amounts of an ethanolamine-phosphate derivative of N-acetylglucosaminyl-diradylglycerol, which is also present in C. sporogenes. Three strains in group II, which are related to Clostridium butyricum, Clostridium beijerinckii and Clostridium acetobutylicum, contained lipids characteristic of these saccharolytic species: a glycerol acetal and a PG acetal of the plasmalogen form of PE. Two group III strains, which are related to Clostridium novyi, contained amino-acyl derivatives of PG, which are also found in C. novyi. A strain in group IV had PE, PG and CL, but none of the distinguishing lipids. This work shows that the lipidome of C. botulinum is consistent with its classification by other methods.


Asunto(s)
Clostridium/química , Clostridium/clasificación , Lípidos/análisis , Neurotoxinas/biosíntesis , Toxinas Bacterianas/biosíntesis , Técnicas de Tipificación Bacteriana/métodos , Cromatografía en Capa Delgada , Clostridium/metabolismo , Espectrometría de Masas
19.
Proc Natl Acad Sci U S A ; 109(32): 12956-61, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826246

RESUMEN

In Gram-negative bacteria, the hydrophobic anchor of the outer membrane lipopolysaccharide is lipid A, a saccharolipid that plays key roles in both viability and pathogenicity of these organisms. The tetraacyldisaccharide 4'-kinase (LpxK) of the diverse P-loop-containing nucleoside triphosphate hydrolase superfamily catalyzes the sixth step in the biosynthetic pathway of lipid A, and is the only known P-loop kinase to act upon a lipid substrate at the membrane. Here, we report the crystal structures of apo- and ADP/Mg(2+)-bound forms of Aquifex aeolicus LpxK to a resolution of 1.9 Å and 2.2 Å, respectively. LpxK consists of two α/ß/α sandwich domains connected by a two-stranded ß-sheet linker. The N-terminal domain, which has most structural homology to other family members, is responsible for catalysis at the P-loop and positioning of the disaccharide-1-phosphate substrate for phosphoryl transfer on the inner membrane. The smaller C-terminal domain, a substructure unique to LpxK, helps bind the nucleotide substrate and Mg(2+) cation using a 25° hinge motion about its base. Activity was severely reduced in alanine point mutants of conserved residues D138 and D139, which are not directly involved in ADP or Mg(2+) binding in our structures, indicating possible roles in phosphoryl acceptor positioning or catalysis. Combined structural and kinetic studies have led to an increased understanding of the enzymatic mechanism of LpxK and provided the framework for structure-based antimicrobial design.


Asunto(s)
Vías Biosintéticas/fisiología , Bacterias Aerobias Gramnegativas/enzimología , Lípido A/biosíntesis , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Vías Biosintéticas/genética , Cromatografía en Capa Delgada , Cristalografía por Rayos X , Cartilla de ADN/genética , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Mutación Puntual/genética
20.
Infect Immun ; 80(9): 3215-24, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22753374

RESUMEN

Lipid A is a key component of the outer membrane of Gram-negative bacteria and stimulates proinflammatory responses via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. Its endotoxic activity depends on the number and length of acyl chains and its phosphorylation state. In Salmonella enterica serovar Typhimurium, removal of the secondary laurate or myristate chain in lipid A results in bacterial attenuation and growth defects in vitro. However, the roles of the two lipid A phosphate groups in bacterial virulence and immunogenicity remain unknown. Here, we used an S. Typhimurium msbB pagL pagP lpxR mutant, carrying penta-acylated lipid A, as the parent strain to construct a series of mutants synthesizing 1-dephosphorylated, 4'-dephosphorylated, or nonphosphorylated penta-acylated lipid A. Dephosphorylated mutants exhibited increased sensitivity to deoxycholate and showed increased resistance to polymyxin B. Removal of both phosphate groups severely attenuated the mutants when administered orally to BALB/c mice, but the mutants colonized the lymphatic tissues and were sufficiently immunogenic to protect the host from challenge with wild-type S. Typhimurium. Mice receiving S. Typhimurium with 1-dephosphorylated or nonphosphorylated penta-acylated lipid A exhibited reduced levels of cytokines. Attenuated and dephosphorylated Salmonella vaccines were able to induce adaptive immunity against heterologous (PspA of Streptococcus pneumoniae) and homologous antigens (lipopolysaccharide [LPS] and outer membrane proteins [OMPs]).


Asunto(s)
Lípido A/toxicidad , Fosfatos/toxicidad , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/patología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/toxicidad , Inmunidad Adaptativa , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Innata , Lípido A/inmunología , Ratones , Ratones Endogámicos BALB C , Fosfatos/metabolismo , Infecciones por Salmonella/microbiología , Vacunas contra la Salmonella/inmunología , Streptococcus pneumoniae , Vacunas Atenuadas/inmunología , Virulencia , Factores de Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...