Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 160, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232020

RESUMEN

While first-generation, spike (S)-based COVID-19 vaccines were effective against early SARS-CoV-2 strains, the rapid evolution of novel Omicron subvariants have substantially reduced vaccine efficacy. As such, broadly protective vaccines against SARS-CoV-2 are needed to prevent future viral emergence. In addition, it remains less clear whether peripheral immunization, especially with mRNA vaccines, elicits effective respiratory immunity. Our group has developed a nucleoside-modified mRNA vaccine expressing the nucleocapsid (N) protein of the ancestral SARS-CoV-2 virus and has tested its use in combination with the S-based mRNA vaccine (mRNA-S). In this study, we examined efficacy of mRNA-N alone or in combination with mRNA-S (mRNA-S+N) against more immune evasive Omicron variants in hamsters. Our data show that mRNA-N alone induces a modest but significant protection against BA.5 and that dual mRNA-S+N vaccination confers complete protection against both BA.5 and BQ.1, preventing detection of virus in the hamster lungs. Analysis of respiratory immune response in mice shows that intramuscular mRNA-S+N immunization effectively induces respiratory S- and N-specific T cell responses in the lungs and in bronchoalveolar lavage (BAL), as well as antigen-specific binding IgG in BAL. Together, our data further support mRNA-S+N as a potential pan-COVID-19 vaccine for broad protection against current and emerging SARS-CoV-2 variants.

2.
Nat Commun ; 14(1): 4260, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460536

RESUMEN

The SARS-CoV-2 Omicron subvariant BA.5 rapidly spread worldwide and replaced BA.1/BA.2 in many countries, becoming globally dominant. BA.5 has unique amino acid substitutions in the spike protein that both mediate immune escape from neutralizing antibodies produced by immunizations and increase ACE2 receptor binding affinity. In a comprehensive, long-term (up to 9 months post primary vaccination), experimental vaccination study using male Syrian hamsters, we evaluate neutralizing antibody responses and efficacy against BA.5 challenge after primary vaccination with Ad26.COV2.S (Janssen) or BNT162b2 (Pfizer/BioNTech) followed by a homologous or heterologous booster with mRNA-1273 (Moderna) or NVX-CoV2373 (Novavax). Notably, one high or low dose of Ad26.COV2.S provides more durable immunity than two primary doses of BNT162b2, and the NVX-CoV2373 booster provides the strongest augmentation of immunity, reduction in BA.5 viral replication, and disease. Our data demonstrate the immunogenicity and efficacy of different prime/boost vaccine regimens against BA.5 infection in an immune-competent model and provide new insights regarding COVID-19 vaccine strategies.


Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Masculino , Humanos , Vacunas contra la COVID-19 , Ad26COVS1 , Vacuna BNT162 , Mesocricetus , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Sci Transl Med ; 14(662): eabq1945, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103514

RESUMEN

Emergence of SARS-CoV-2 variants of concern (VOCs), including the highly transmissible Omicron and Delta strains, has posed constant challenges to the current COVID-19 vaccines that principally target the viral spike protein (S). Here, we report a nucleoside-modified messenger RNA (mRNA) vaccine that expresses the more conserved viral nucleoprotein (mRNA-N) and show that mRNA-N vaccination alone can induce modest control of SARS-CoV-2. Critically, combining mRNA-N with the clinically proven S-expressing mRNA vaccine (mRNA-S+N) induced robust protection against both Delta and Omicron variants. In the hamster models of SARS-CoV-2 VOC challenge, we demonstrated that, compared to mRNA-S alone, combination mRNA-S+N vaccination not only induced more robust control of the Delta and Omicron variants in the lungs but also provided enhanced protection in the upper respiratory tract. In vivo CD8+ T cell depletion suggested a potential role for CD8+ T cells in protection conferred by mRNA-S+N vaccination. Antigen-specific immune analyses indicated that N-specific immunity, as well as augmented S-specific immunity, was associated with enhanced protection elicited by the combination mRNA vaccination. Our findings suggest that combined mRNA-S+N vaccination is an effective approach for promoting broad protection against SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , Nucleocápside , ARN Mensajero/genética , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Proteínas Virales , Vacunas de ARNm
4.
Peptides ; 157: 170844, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35878658

RESUMEN

Vaccines based on proteins and peptides may be safer and if calculated based on many sequences, more broad-spectrum than those designed based on single strains. Physicochemical Property Consensus (PCPcon) alphavirus (AV) antigens from the B-domain of the E2 envelope protein were designed, synthesized recombinantly and shown to be immunogenic (i.e. sera after inoculation detected the antigen in dotspots and ELISA). Antibodies in sera after inoculation with B-region antigens based on individual AV species (eastern or Venezuelan equine encephalitis (EEEVcon, VEEVcon), or chikungunya (CHIKVcon) bound only their cognate protein, while those designed against multiple species (Mosaikcon and EVCcon) recognized all three serotype specific antigens. The VEEVcon and EEEVcon sera only showed antiviral activity against their related strains (in plaque reduction neutralization assays (PRNT50/80). Peptides designed to surface exposed areas of the E2-A-domain of CHIKVcon were added to CHIKVcon inocula to provide anti-CHIKV antibodies. EVCcon, based on three different alphavirus species, combined with E2-A-domain peptides from AllAVcon, a PCPcon of 24 diverse AV, generated broad spectrum, antiviral antibodies against VEEV, EEEV and CHIKV, AV with less than 35% amino acid identity to each other (>65% diversity). This is a promising start to a molecularly defined vaccine against all AV. Further study with these antigens can illuminate what areas are most important for a robust immune response, resistant to mutations in rapidly evolving viruses. The validated computational methods can also be used to design broad spectrum antigens against many other pathogen families.


Asunto(s)
Alphavirus , Aminoácidos , Anticuerpos Antivirales , Antivirales , Anticuerpos ampliamente neutralizantes , Consenso , Péptidos
5.
NPJ Vaccines ; 6(1): 139, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845215

RESUMEN

A candidate multigenic SARS-CoV-2 vaccine based on an MVA vector expressing both viral N and S proteins (MVA-S + N) was immunogenic, and induced T-cell responses and binding antibodies to both antigens but in the absence of detectable neutralizing antibodies. Intranasal immunization with the vaccine diminished viral loads and lung inflammation in mice after SARS-CoV-2 challenge, which correlated with the T-cell response induced by the vaccine in the lung, indicating that T-cell immunity is also likely critical for protection against SARS-CoV-2 infection in addition to neutralizing antibodies.

6.
mSphere ; 6(3): e0017021, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34077262

RESUMEN

Neutralizing antibodies are key determinants of protection from future infection, yet well-validated high-throughput assays for measuring titers of SARS-CoV-2-neutralizing antibodies are not generally available. Here, we describe the development and validation of IMMUNO-COV v2.0, a scalable surrogate virus assay, which titrates antibodies that block infection of Vero-ACE2 cells by a luciferase-encoding vesicular stomatitis virus displaying SARS-CoV-2 spike glycoproteins (VSV-SARS2-Fluc). Antibody titers, calculated using a standard curve consisting of stepped concentrations of SARS-CoV-2 spike monoclonal antibody, correlated closely (P < 0.0001) with titers obtained from a gold standard 50% plaque-reduction neutralization test (PRNT50%) performed using a clinical isolate of SARS-CoV-2. IMMUNO-COV v2.0 was comprehensively validated using data acquired from 242 assay runs performed over 7 days by five analysts, utilizing two separate virus lots, and 176 blood samples. Assay performance was acceptable for clinical use in human serum and plasma based on parameters including linearity, dynamic range, limit of blank and limit of detection, dilutional linearity and parallelism, precision, clinical agreement, matrix equivalence, clinical specificity and sensitivity, and robustness. Sufficient VSV-SARS2-Fluc virus reagent has been banked to test 5 million clinical samples. Notably, a significant drop in IMMUNO-COV v2.0 neutralizing antibody titers was observed over a 6-month period in people recovered from SARS-CoV-2 infection. Together, our results demonstrate the feasibility and utility of IMMUNO-COV v2.0 for measuring SARS-CoV-2-neutralizing antibodies in vaccinated individuals and those recovering from natural infections. Such monitoring can be used to better understand what levels of neutralizing antibodies are required for protection from SARS-CoV-2 and what booster dosing schedules are needed to sustain vaccine-induced immunity. IMPORTANCE Since its emergence at the end of 2019, SARS-CoV-2, the causative agent of COVID-19, has caused over 100 million infections and 2.4 million deaths worldwide. Recently, countries have begun administering approved COVID-19 vaccines, which elicit strong immune responses and prevent disease in most vaccinated individuals. A key component of the protective immune response is the production of neutralizing antibodies capable of preventing future SARS-CoV-2 infection. Yet, fundamental questions remain regarding the longevity of neutralizing antibody responses following infection or vaccination and the level of neutralizing antibodies required to confer protection. Our work is significant as it describes the development and validation of a scalable clinical assay that measures SARS-CoV-2-neutraling antibody titers. We have critical virus reagent to test over 5 million samples, making our assay well suited for widespread monitoring of SARS-CoV-2-neutralizing antibodies, which can in turn be used to inform vaccine dosing schedules and answer fundamental questions regarding SARS-CoV-2 immunity.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Chlorocebus aethiops , Humanos , Límite de Detección , Pruebas de Neutralización/métodos , Índice de Severidad de la Enfermedad , Células Vero
7.
Virology ; 561: 117-124, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33823988

RESUMEN

There is a pressing need for vaccines against mosquito-borne alphaviruses such as Venezualen and eastern equine encephalitis viruses (VEEV, EEEV). We demonstrate an approach to vaccine development based on physicochemical properties (PCP) of amino acids to design a PCP-consensus sequence of the epitope-rich B domain of the VEEV major antigenic E2 protein. The consensus "spike" domain was incorporated into a live-attenuated VEEV vaccine candidate (ZPC/IRESv1). Mice inoculated with either ZPC/IRESv1 or the same virus containing the consensus E2 protein fragment (VEEVconE2) were protected against lethal challenge with VEEV strains ZPC-738 and 3908, and Mucambo virus (MUCV, related to VEEV), and had comparable neutralizing antibody titers against each virus. Both vaccines induced partial protection against Madariaga virus (MADV), a close relative of EEEV, lowering mortality from 60% to 20%. Thus PCP-consensus sequences can be integrated into a replicating virus that could, with further optimization, provide a broad-spectrum vaccine against encephalitic alphaviruses.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Alphavirus/inmunología , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Desarrollo de Vacunas , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Infecciones por Alphavirus/inmunología , Aminoácidos/química , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina del Este/inmunología , Encefalomielitis Equina Oriental/inmunología , Encefalomielitis Equina Oriental/prevención & control , Encefalomielitis Equina Venezolana/inmunología , Femenino , Inmunogenicidad Vacunal , Ratones , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
8.
Nat Commun ; 12(1): 595, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500409

RESUMEN

Zika virus (ZIKV) emerged from obscurity in 2013 to spread from Asia to the South Pacific and the Americas, where millions of people were infected, accompanied by severe disease including microcephaly following congenital infections. Phylogenetic studies have shown that ZIKV evolved in Africa and later spread to Asia, and that the Asian lineage is responsible for the recent epidemics in the South Pacific and Americas. However, the reasons for the sudden emergence of ZIKV remain enigmatic. Here we report evolutionary analyses that revealed four mutations, which occurred just before ZIKV introduction to the Americas, represent direct reversions of previous mutations that accompanied earlier spread from Africa to Asia and early circulation there. Our experimental infections of Aedes aegypti mosquitoes, human cells, and mice using ZIKV strains with and without these mutations demonstrate that the original mutations reduced fitness for urban, human-amplifed transmission, while the reversions restored fitness, increasing epidemic risk. These findings include characterization of three transmission-adaptive ZIKV mutations, and demonstration that these and one identified previously restored fitness for epidemic transmission soon before introduction into the Americas. The initial mutations may have followed founder effects and/or drift when the virus was introduced decades ago into Asia.


Asunto(s)
Epidemias , Evolución Molecular , Aptitud Genética , Infección por el Virus Zika/epidemiología , Virus Zika/genética , Aedes/virología , África/epidemiología , Américas/epidemiología , Sustitución de Aminoácidos , Animales , Asia/epidemiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Humanos , Queratinocitos , Ratones , Mutación , Filogenia , Cultivo Primario de Células , Salud Urbana/estadística & datos numéricos , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
9.
ACS Nano ; 14(10): 14017-14025, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32955847

RESUMEN

In March of 2020, the World Health Organization declared a pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pandemic led to a shortage of N95-grade filtering facepiece respirators (FFRs), especially surgical-grade N95 FFRs for protection of healthcare professionals against airborne transmission of SARS-CoV-2. We and others have previously reported promising decontamination methods that may be applied to the recycling and reuse of FFRs. In this study we tested disinfection of three viruses, including SARS-CoV-2, dried on a piece of meltblown fabric, the principal component responsible for filtering of fine particles in N95-level FFRs, under a range of temperatures (60-95 °C) at ambient or 100% relative humidity (RH) in conjunction with filtration efficiency testing. We found that heat treatments of 75 °C for 30 min or 85 °C for 20 min at 100% RH resulted in efficient decontamination from the fabric of SARS-CoV-2, human coronavirus NL63 (HCoV-NL63), and another enveloped RNA virus, chikungunya virus vaccine strain 181/25 (CHIKV-181/25), without lowering the meltblown fabric's filtration efficiency.


Asunto(s)
Desinfección/métodos , Calor , Humedad , Máscaras/virología , Textiles/virología , Betacoronavirus/patogenicidad , Máscaras/normas , Polipropilenos/química , SARS-CoV-2 , Textiles/normas
10.
medRxiv ; 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817954

RESUMEN

In March of 2020, the World Health Organization declared a pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pandemic led to a shortage of N95-grade filtering facepiece respirators (FFRs), especially for protection of healthcare professionals against airborne transmission of SARS-CoV-2. We and others have previously reported promising decontamination methods that may be applied to the recycling and reuse of FFRs. In this study we tested disinfection of three viruses including SARS-CoV-2, dried on a piece of meltblown fabric, the principal component responsible for filtering of fine particles in N95-level FFRs, under a range of temperatures (60-95°C) at ambient or 100% relative humidity (RH) in conjunction with filtration efficiency testing. We found that heat treatments of 75°C for 30 min or 85°C for 20 min at 100% RH resulted in efficient decontamination from the fabric of SARS-CoV-2, human coronavirus NL63 (HCoV-NL63) and chikungunya virus vaccine strain 181 (CHIKV-181), without lowering the meltblown fabric's filtration efficiency.

11.
bioRxiv ; 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32577655

RESUMEN

We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system. VSV-SARS-CoV-2-S-Δ19CT infection was blocked by monoclonal α-SARS-CoV-2-spike antibodies and by plasma or serum from SARS-CoV-2 convalescing individuals. The assay exhibited 100% specificity in validation tests, and across all tests zero false positives were detected. In blinded analyses of 230 serum samples, only two unexpected results were observed based on available clinical data. We observed a perfect correlation between results from our assay and 80 samples that were also assayed using a commercially available ELISA. To quantify the magnitude of the anti-viral response, we generated a calibration curve by adding stepped concentrations of α-SARS-CoV-2-spike monoclonal antibody to pooled SARS-CoV-2 seronegative serum. Using the calibration curve and a single optimal 1:100 serum test dilution, we reliably measured neutralizing antibody levels in each test sample. Virus neutralization units (VNUs) calculated from the assay correlated closely (p < 0.0001) with PRNT EC50 values determined by plaque reduction neutralization test against a clinical isolate of SARS-CoV-2. Taken together, these results demonstrate that the IMMUNO-COV™ assay accurately quantitates SARS-CoV-2 neutralizing antibodies in human sera and therefore is a potentially valuable addition to the currently available serological tests. The assay can provide vital information for comparing immune responses to the various SARS-CoV-2 vaccines that are currently in development, or for evaluating donor eligibility in convalescent plasma therapy studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA