Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-450701

RESUMEN

Small molecule therapeutics targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lagged far behind the development of vaccines in the fight to control the COVID-19 pandemic. Here, we show that thiol-based mucolytic agents, P2119 and P2165, potently inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity of repurposed mucolytic agents to the reduction of key disulfides, specifically, by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif (RBM) in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol warhead pointed directly towards Cys432. These collective findings establish the vulnerability of human coronaviruses to repurposed thiol-based mucolytics and lay the groundwork for developing these compounds as a potential treatment, preventative and/or adjuvant against infection.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20161802

RESUMEN

BackgroundSouth America has become the new epicenter of the COVID-19 pandemic with more than 1.1M reported cases and >50,000 deaths (June 2020). Conversely, Uruguay stands out as an outlier managing this health crisis with remarkable success. MethodsWe developed a molecular diagnostic test to detect SARS-CoV-2. This methodology was transferred to research institutes, public hospitals and academic laboratories all around the country, creating a "COVID-19 diagnostic lab network". Uruguay also implemented active epidemiological surveillance following the "Test, Trace and Isolate" (TETRIS) strategy coupled to real-time genomic epidemiology. ResultsThree months after the first cases were detected, the number of positive individuals reached 826 (23 deaths, 112 active cases and 691 recovered). The Uruguayan strategy was based in a close synergy established between the national health authorities and the scientific community. In turn, academia rapidly responded to develop national RT-qPCR tests. Consequently, Uruguay was able to perform [~]1,000 molecular tests per day in a matter of weeks. The "COVID-19 diagnostic lab network" performed more than 54% of the molecular tests in the country. This, together with real- time genomics, were instrumental to implement the TETRIS strategy, helping to contain domestic transmission of the main outbreaks registered so far. ConclusionsUruguay has successfully navigated the first trimester of the COVID-19 health crisis in South America. A rapid response by the scientific community to increase testing capacity, together with national health authorities seeking out the support from the academia were fundamental to successfully contain, until now, the COVID-19 outbreak in the country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...