Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 47(1): 209-227, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37606819

RESUMEN

PURPOSE: Retinoblastoma, a childhood cancer, is most frequently caused by bi-allelic inactivation of RB1 gene. However, other oncogenic mutations such as MYCN amplification can induce retinoblastoma with proficient RB1. Previously, we established RB1-proficient MYCN-overexpressing retinoblastoma models both in human organoids and chicken. Here, we investigate the regulatory events in MYCN-induced retinoblastoma carcinogenesis based on the model in chicken. METHODS: MYCN transformed retinal cells in culture were obtained from in vivo MYCN electroporated chicken embryo retina. The expression profiles were analysed by RNA sequencing. Chemical treatments, qRT-PCR, flow cytometry, immunohisto- and immunocytochemistry and western blot were applied to study the properties and function of these cells. RESULTS: The expression profile of MYCN-transformed retinal cells in culture showed cone photoreceptor progenitor signature and robustly increased levels of E2Fs. This expression profile was consistently observed in long-term culture. Chemical treatments confirmed RB1 proficiency in these cells. The cells were insensitive to p53 activation but inhibition of E2f efficiently induced cell cycle arrest followed by apoptosis. CONCLUSION: In conclusion, with proficient RB1, MYCN-induced high level of E2F expression dysregulates the cell cycle and contributes to retinoblastoma carcinogenesis. The increased level of E2f renders the cells to adopt a similar mechanistic phenotype to a RB1-deficient tumour.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Embrión de Pollo , Animales , Humanos , Niño , Retinoblastoma/genética , Retinoblastoma/patología , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Pollos/metabolismo , Carcinogénesis , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
2.
Genetics ; 225(4)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37793096

RESUMEN

Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteoma , Humanos , Proteoma/genética , Secuenciación Completa del Genoma , Genoma Humano
3.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36334099

RESUMEN

Adaptation from standing genetic variation is an important process underlying evolution in natural populations, but we rarely get the opportunity to observe the dynamics of fitness and genomic changes in real time. Here, we used experimental evolution and Pool-Seq to track the phenotypic and genomic changes of genetically diverse asexual populations of the yeast Saccharomyces cerevisiae in four environments with different fitness costs. We found that populations rapidly and in parallel increased in fitness in stressful environments. In contrast, allele frequencies showed a range of trajectories, with some populations fixing all their ancestral variation in <30 generations and others maintaining diversity across hundreds of generations. We detected parallelism at the genomic level (involving genes, pathways, and aneuploidies) within and between environments, with idiosyncratic changes recurring in the environments with higher stress. In particular, we observed a tendency of becoming haploid-like in one environment, whereas the populations of another environment showed low overall parallelism driven by standing genetic variation despite high selective pressure. This work highlights the interplay between standing genetic variation and the influx of de novo mutations in populations adapting to a range of selective pressures with different underlying trait architectures, advancing our understanding of the constraints and drivers of adaptation.


Asunto(s)
Evolución Molecular , Saccharomyces cerevisiae , Adaptación Fisiológica/genética , Aptitud Genética , Variación Genética , Mutación , Saccharomyces cerevisiae/genética , Estrés Fisiológico
4.
Ecol Evol ; 12(7): e9050, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813906

RESUMEN

Population translocations occur for a variety of reasons, from displacement due to climate change to human-induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole-genome sequencing of pooled DNA (Pool-seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool-seq can be used as an initial tool to monitor genome-wide effects.

5.
Oncogenesis ; 11(1): 34, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729105

RESUMEN

Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7-9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype.

6.
Nat Commun ; 13(1): 2532, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534486

RESUMEN

Despite the success of genome-wide association studies, much of the genetic contribution to complex traits remains unexplained. Here, we analyse high coverage whole-genome sequencing data, to evaluate the contribution of rare genetic variants to 414 plasma proteins. The frequency distribution of genetic variants is skewed towards the rare spectrum, and damaging variants are more often rare. We estimate that less than 4.3% of the narrow-sense heritability is expected to be explained by rare variants in our cohort. Using a gene-based approach, we identify Cis-associations for 237 of the proteins, which is slightly more compared to a GWAS (N = 213), and we identify 34 associated loci in Trans. Several associations are driven by rare variants, which have larger effects, on average. We therefore conclude that rare variants could be of importance for precision medicine applications, but have a more limited contribution to the missing heritability of complex diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Proteínas Sanguíneas/genética , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
7.
Front Plant Sci ; 12: 665618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149762

RESUMEN

Herbs and spices are some of the most vulnerable products in terms of fraud and adulteration in the food sector. Although standard analytical methods are accurate for quality control of specific lead or marker compounds, they cannot accurately assess the entire species composition of many marketed products. Complementary analytical approaches are thus often used for comprehensive screening of herbs and spices. In this study we evaluate DNA metabarcoding for the identification and authentication of 62 products, containing basil, oregano, and paprika collected from different retailers and importers in Norway. Our results show varying degrees of discrepancy between the constituent species and those listed on the product labels, despite high product authenticity. We suggest the false positives result from the sensitivity of DNA metabarcoding and filtering thresholds should be integrated into protocols to reduce false positives. Our results highlight how integrating DNA metabarcoding into the toolbox of analytical methods for quality control of fresh and/or processed plant-based food can improve product quality.

8.
J Clin Endocrinol Metab ; 106(11): 3265-3282, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34171097

RESUMEN

BACKGROUND: The genomic and transcriptomic landscape of widely invasive follicular thyroid carcinomas (wiFTCs) and Hürthle cell carcinoma (HCC) are poorly characterized, and subsets of these tumors lack information on genetic driver events. OBJECTIVE: The aim of this study was to bridge this gap. METHODS: We performed whole-genome and RNA sequencing and subsequent bioinformatic analyses of 11 wiFTCs and 2 HCCs with a particularly poor prognosis, and matched normal tissue. RESULTS: All wiFTCs exhibited one or several mutations in established thyroid cancer genes, including TERT (n = 4), NRAS (n = 3), HRAS, KRAS, AKT, PTEN, PIK3CA, MUTYH, TSHR, and MEN1 (n = 1 each). MutSig2CV analysis revealed recurrent somatic mutations in FAM72D (n = 3, in 2 wiFTCs and in a single HCC), TP53 (n = 3, in 2 wiFTCs and a single HCC), and EIF1AX (n = 3), with DGCR8 (n = 2) as borderline significant. The DGCR8 mutations were recurrent p.E518K missense alterations, known to cause familial multinodular goiter via disruption of microRNA (miRNA) processing. Expression analyses showed reduced DGCR8 messenger RNA expression in FTCs in general, and the 2 DGCR8 mutants displayed a distinct miRNA profile compared to DGCR8 wild-types. Copy number analyses revealed recurrent gains on chromosomes 4, 6, and 10, and fusion gene analyses revealed 27 high-quality events. Both HCCs displayed hyperploidy, which was fairly unusual in the FTC cohort. Based on the transcriptome data, tumors amassed in 2 principal clusters. CONCLUSION: We describe the genomic and transcriptomic landscape in wiFTCs and HCCs and identify novel recurrent mutations and copy number alterations with possible driver properties and lay the foundation for future studies.


Asunto(s)
Adenocarcinoma Folicular/patología , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias de la Tiroides/patología , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Mutación , Pronóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Secuenciación Completa del Genoma
9.
Proc Natl Acad Sci U S A ; 117(39): 24359-24368, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32938798

RESUMEN

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.


Asunto(s)
Peces/genética , Cromosomas Sexuales/genética , Animales , Evolución Molecular , Femenino , Proteínas de Peces/genética , Peces/fisiología , Duplicación de Gen , Masculino , Reproducción
10.
Genome Biol Evol ; 12(10): 1918-1928, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32835359

RESUMEN

Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development. This suggests that a large proportion of the genetic changes targeted by selection during domestication might affect gene regulation. Here, we generated RNA-sequencing data for four brain regions (amygdala, hypothalamus, hippocampus, and parietal/temporal cortex) sampled at birth and revealed hundreds of differentially expressed genes (DEGs) between wild and domestic rabbits. DEGs in amygdala were significantly enriched for genes associated with dopaminergic function and all 12 DEGs in this category showed higher expression in domestic rabbits. DEGs in hippocampus were enriched for genes associated with ciliary function, all 21 genes in this category showed lower expression in domestic rabbits. These results indicate an important role of dopamine signaling and ciliary function in the evolution of tameness during rabbit domestication. Our study shows that gene expression in specific pathways has been profoundly altered during domestication, but that the majority of genes showing differential expression in this study have not been the direct targets of selection.


Asunto(s)
Evolución Biológica , Encéfalo/metabolismo , Domesticación , Dopamina/metabolismo , Conejos/genética , Animales , Animales Recién Nacidos , Cilios/genética , Mapas de Interacción de Proteínas , Conejos/metabolismo , Selección Genética , Transcriptoma
11.
BMC Genomics ; 21(1): 307, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299354

RESUMEN

BACKGROUND: Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology, and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the susceptibility to the disease in the high-risk Giant Schnauzer dog breed. RESULTS: By employing genome-wide association followed by fine-mapping (top variant p-value = 5.7 × 10- 6), integrated with whole-genome resequencing and copy number variation analysis, we detected a ~ 8.9 kbp deletion strongly associated (p-value = 0.0001) with protection against development of hypothyroidism. The deletion is located between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions to the identified deletion and to characterize the canine IFNA gene cluster in more detail. CONCLUSIONS: Our results expand the current knowledge on genetic determinants of canine hypothyroidism by revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools across species, and may contribute to improved canine breeding strategies.


Asunto(s)
Enfermedades de los Perros/genética , Predisposición Genética a la Enfermedad , Enfermedad de Hashimoto/genética , Enfermedad de Hashimoto/veterinaria , Interferón-alfa/genética , Tiroiditis Autoinmune/genética , Tiroiditis Autoinmune/veterinaria , Animales , Cruzamiento , Variaciones en el Número de Copia de ADN , Perros , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia
13.
Sci Rep ; 9(1): 16844, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727947

RESUMEN

Genome-wide association studies (GWAS) have identified associations between thousands of common genetic variants and human traits. However, common variants usually explain a limited fraction of the heritability of a trait. A powerful resource for identifying trait-associated variants is whole genome sequencing (WGS) data in cohorts comprised of families or individuals from a limited geographical area. To evaluate the power of WGS compared to imputations, we performed GWAS on WGS data for 72 inflammatory biomarkers, in a kinship-structured cohort. When using WGS data, we identified 18 novel associations that were not detected when analyzing the same biomarkers with genotyped or imputed SNPs. Five of the novel top variants were low frequency variants with a minor allele frequency (MAF) of <5%. Our results suggest that, even when applying a GWAS approach, we gain power and precision using WGS data, presumably due to more accurate determination of genotypes. The lack of a comparable dataset for replication of our results is a limitation in our study. However, this further highlights that there is a need for more genetic epidemiological studies based on WGS data.


Asunto(s)
Proteínas Sanguíneas/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Sanguíneas/inmunología , Femenino , Frecuencia de los Genes , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 115(28): 7380-7385, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941556

RESUMEN

The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.


Asunto(s)
Conducta Animal/fisiología , Domesticación , Miedo/fisiología , Sustancia Gris , Corteza Prefrontal , Sustancia Blanca , Animales , Sustancia Gris/anatomía & histología , Sustancia Gris/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Conejos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/fisiología
15.
BMC Genomics ; 19(1): 295, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29695257

RESUMEN

BACKGROUND: The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. RESULTS: Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. CONCLUSIONS: Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance.


Asunto(s)
Pollos/genética , Grasa Intraabdominal/metabolismo , Reproducción/genética , Adipoquinas/genética , Animales , Ingestión de Alimentos , Femenino , Perfilación de la Expresión Génica , Genómica , Grasa Intraabdominal/química , Nicotinamida Fosforribosiltransferasa/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Proteómica , Proteína A Asociada a Surfactante Pulmonar/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/genética , Transcriptoma
16.
Mol Ecol ; 27(6): 1457-1478, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29359877

RESUMEN

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.


Asunto(s)
Aberraciones Cromosómicas , Regulación de la Expresión Génica/genética , Especiación Genética , Aislamiento Reproductivo , Animales , Frecuencia de los Genes , Masculino , Modelos Genéticos , Sitios de Carácter Cuantitativo/genética , Conejos , Testículo/metabolismo , Secuenciación Completa del Genoma
17.
Elife ; 62017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665273

RESUMEN

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π = 0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species. Based on whole-genome sequencing of four parents and 12 offspring, the estimated mutation rate is 2.0 × 10-9 per base per generation. We observed a high degree of parental mosaicism indicating that a large fraction of these de novo mutations occurred during early germ cell development. The estimated mutation rate - the lowest among vertebrates analyzed to date - partially explains the discrepancy between the rather low nucleotide diversity in herring and its huge census population size. But a species like the herring will never reach its expected nucleotide diversity because of fluctuations in population size over the millions of years it takes to build up high nucleotide diversity.


Asunto(s)
Peces/genética , Tasa de Mutación , Nucleótidos/genética , Animales , Secuenciación Completa del Genoma
18.
Proc Natl Acad Sci U S A ; 114(17): E3452-E3461, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28389569

RESUMEN

Atlantic herring is an excellent species for studying the genetic basis of adaptation in geographically distant populations because of its characteristically large population sizes and low genetic drift. In this study we compared whole-genome resequencing data of Atlantic herring populations from both sides of the Atlantic Ocean. An important finding was the very low degree of genetic differentiation among geographically distant populations (fixation index = 0.026), suggesting lack of reproductive isolation across the ocean. This feature of the Atlantic herring facilitates the detection of genetic factors affecting adaptation because of the sharp contrast between loci showing genetic differentiation resulting from natural selection and the low background noise resulting from genetic drift. We show that genetic factors associated with timing of reproduction are shared between genetically distinct and geographically distant populations. The genes for thyroid-stimulating hormone receptor (TSHR), the SOX11 transcription factor (SOX11), calmodulin (CALM), and estrogen receptor 2 (ESR2A), all with a significant role in reproductive biology, were among the loci that showed the most consistent association with spawning time throughout the species range. In fact, the same two SNPs located at the 5' end of TSHR showed the most significant association with spawning time in both the east and west Atlantic. We also identified unexpected haplotype sharing between spring-spawning oceanic herring and autumn-spawning populations across the Atlantic Ocean and the Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning time but may be involved in adaptation to ecological factor(s) shared among these populations.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Receptores de Tirotropina/genética , Animales , Océano Atlántico , Estudio de Asociación del Genoma Completo
19.
Elife ; 52016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27138043

RESUMEN

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.


Asunto(s)
Adaptación Biológica , Peces/genética , Variación Genética , Animales , Océano Atlántico , Peces/clasificación , Peces/fisiología , Genética de Población , Genómica , Aguas Salinas , Agua de Mar
20.
G3 (Bethesda) ; 6(7): 2213-23, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27207956

RESUMEN

Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure and impaired movements, and affected foals are usually killed. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing. We screened for polymorphisms where the cases and the control pool were fixed for opposite alleles and observed this signature for only 25 SNPs, most of which were scattered on genome assembly unassigned scaffolds. Read depth analysis at these loci revealed homozygosity or compound heterozygosity for two partially overlapping large deletions in the pseudoautosomal region (PAR) of chromosome X/Y in cases but not in the control pool. One of these deletions removes the entire coding region of the SHOX gene and both deletions remove parts of the CRLF2 gene located downstream of SHOX. The horse reference assembly of the PAR is highly fragmented, and in order to characterize this region we sequenced bacterial artificial chromosome (BAC) clones by single-molecule real-time (SMRT) sequencing technology. This considerably improved the assembly and enabled size estimations of the two deletions to 160-180 kb and 60-80 kb, respectively. Complete association between the presence of these deletions and disease status was verified in eight other affected horses. The result of the present study is consistent with previous studies in humans showing crucial importance of SHOX for normal skeletal development.


Asunto(s)
Huesos/metabolismo , Mapeo Cromosómico , Genoma , Proteínas de Homeodominio/genética , Caballos/genética , Regiones Pseudoautosómicas/química , Eliminación de Secuencia , Animales , Secuencia de Bases , Huesos/anomalías , Femenino , Sitios Genéticos , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Homocigoto , Masculino , Regiones Pseudoautosómicas/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...