Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 29(10): 15031-15052, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985212

RESUMEN

Hybrid 3D Finite difference time domain-Monte Carlo ray tracing (FDTD-MCRT) algorithm has been developed to model and optimise small and large scale plasmonically-enhanced luminescent solar concentrator (pLSC) devices for photovoltaic (PV) applications. The configuration parameters (for example, dimensions, shape, and optical properties of metal nanoparticles, luminescent species, and host material) were used to characterise the probability of optical energy transfer and loss processes, as well as reflection, refraction, absorption, emission enhancement, and total internal reflection (TIR) in the pLSC. The algorithm was validated through modelling of various doping concentrations of CdSe/ZnS quantum dots (QD) and gold nano spheres (Au NS) where ∼50% enhancement in optical conversion efficiency (OCE) was observed for a plasmonic composite of 2 ppm Au NS and 0.008 wt. % QD.

2.
Langmuir ; 35(40): 13011-13019, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525940

RESUMEN

A multitude of applications is related to the unique properties of absorption, scattering, and plasmon-enhanced phenomena of metal nanoparticles (MNPs). The aqueous colloidal-based synthesis of MNPs is used more widely as it allows precise shape and size control. However, for various applications, it is required to have the MNPs in an organic solvent or polymer that is compatible with the MNPs. This work establishes a protocol from the synthesis to the phase transfer process of gold nanorods and gold core silver shell nanocuboids (Au@Ag NCs) in dichloromethane. Subsequent dispersion in a polymer (silicone encapsulant polymer) is achieved while retaining the MNPs' plasmonic properties. Au@Ag NCs have not been transferred to an organic solvent to date due to their unique shape and instability in the organic phase. The established protocol is reproducible, and MNPs were found to be stable for up to a year in the polymer. Qualitative and quantitative validation of the experimental results is achieved on MNP concentration by a model based on the finite difference time domain method. Using the model, the concentration of MNPs in nanocomposite can be determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...