Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 12177, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500682

RESUMEN

The control of malaria parasite transmission from mosquitoes to humans is hampered by decreasing efficacies of insecticides, development of drug resistance against the last-resort antimalarials, and the absence of effective vaccines. Herein, the anti-plasmodial transmission blocking activity of a recombinant Aspergillus oryzae (A. oryzae-R) fungus strain, which is used in human food industry, was investigated in laboratory-reared Anopheles stephensi mosquitoes. The recombinant fungus strain was genetically modified to secrete two anti-plasmodial effector peptides, MP2 (midgut peptide 2) and EPIP (enolase-plasminogen interaction peptide) peptides. The transstadial transmission of the fungus from larvae to adult mosquitoes was confirmed following inoculation of A. oryzae-R in the water trays used for larval rearing. Secretion of the anti-plasmodial effector peptides inside the mosquito midguts inhibited oocyst formation of P. berghei parasites. These results indicate that A. oryzae can be used as a paratransgenesis model carrying effector proteins to inhibit malaria parasite development in An. stephensi. Further studies are needed to determine if this recombinant fungus can be adapted under natural conditions, with a minimal or no impact on the environment, to target mosquito-borne infectious disease agents inside their vectors.


Asunto(s)
Anopheles , Aspergillus oryzae , Malaria , Parásitos , Animales , Adulto , Humanos , Anopheles/parasitología , Oocistos , Aspergillus oryzae/genética , Plasmodium berghei/genética , Larva , Mosquitos Vectores , Malaria/parasitología
2.
Infect Immun ; 91(7): e0016723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37260388

RESUMEN

A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.


Asunto(s)
Carboxiliasas , Culicidae , Malaria , Parásitos , Animales , Masculino , Culicidae/parasitología , Aminoácidos/metabolismo , Lisina/metabolismo , Malaria/parasitología , Bacterias , Células Germinativas/metabolismo , Carboxiliasas/metabolismo
3.
Front Physiol ; 13: 1034066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505058

RESUMEN

The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.

4.
Nature ; 585(7824): 239-244, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879485

RESUMEN

Obligate endosymbiosis, in which distantly related species integrate to form a single replicating individual, represents a major evolutionary transition in individuality1-3. Although such transitions are thought to increase biological complexity1,2,4-6, the evolutionary and developmental steps that lead to integration remain poorly understood. Here we show that obligate endosymbiosis between the bacteria Blochmannia and the hyperdiverse ant tribe Camponotini7-11 originated and also elaborated through radical alterations in embryonic development, as compared to other insects. The Hox genes Abdominal A (abdA) and Ultrabithorax (Ubx)-which, in arthropods, normally function to differentiate abdominal and thoracic segments after they form-were rewired to also regulate germline genes early in development. Consequently, the mRNAs and proteins of these Hox genes are expressed maternally and colocalize at a subcellular level with those of germline genes in the germplasm and three novel locations in the freshly laid egg. Blochmannia bacteria then selectively regulate these mRNAs and proteins to make each of these four locations functionally distinct, creating a system of coordinates in the embryo in which each location performs a different function to integrate Blochmannia into the Camponotini. Finally, we show that the capacity to localize mRNAs and proteins to new locations in the embryo evolved before obligate endosymbiosis and was subsequently co-opted by Blochmannia and Camponotini. This pre-existing molecular capacity converged with a pre-existing ecological mutualism12,13 to facilitate both the horizontal transfer10 and developmental integration of Blochmannia into Camponotini. Therefore, the convergence of pre-existing molecular capacities and ecological interactions-as well as the rewiring of highly conserved gene networks-may be a general feature that facilitates the origin and elaboration of major transitions in individuality.


Asunto(s)
Hormigas/embriología , Hormigas/microbiología , Bacterias , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/genética , Individualidad , Simbiosis/genética , Animales , Hormigas/citología , Hormigas/genética , Desarrollo Embrionario/genética , Femenino , Genes Homeobox/genética , Herencia Materna/genética , Oocitos/citología , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Adv Exp Med Biol ; 781: 107-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24277297

RESUMEN

The major goal of ecological evolutionary developmental biology, also known as "eco-evo-devo," is to uncover the rules that underlie the interactions between an organism's environment, genes, and development and to incorporate these rules into evolutionary theory. In this chapter, we discuss some key and emerging concepts within eco-evo-devo. These concepts show that the environment is a source and inducer of genotypic and phenotypic variation at multiple levels of biological organization, while development acts as a regulator that can mask, release, or create new combinations of variation. Natural selection can subsequently fix this variation, giving rise to novel phenotypes. Combining the approaches of eco-evo-devo and ecological genomics will mutually enrich these fields in a way that will not only enhance our understanding of evolution, but also of the genetic mechanisms underlying the responses of organisms to their natural environments.


Asunto(s)
Adaptación Biológica/fisiología , Evolución Molecular , Interacción Gen-Ambiente , Genotipo , Modelos Genéticos , Selección Genética/fisiología
7.
Development ; 139(18): 3373-82, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874914

RESUMEN

Bone morphogenetic protein (BMP) signaling is an essential factor in dorsoventral patterning of animal embryos but how BMP signaling evolved with fundamental changes in dorsoventral tissue differentiation is unclear. Flies experienced an evolutionary reduction of extra-embryonic tissue types from two (amniotic and serosal tissue) to one (amnionserosal tissue). BMP-dependent amnioserosa specification has been studied in Drosophila melanogaster. However, the mechanisms of serosal and amniotic tissue specification in less diverged flies remain unknown. To better understand potential evolutionary links between BMP signaling and extra-embryonic tissue specification, we examined the activity profile and function of BMP signaling in serosa and amnion patterning of the scuttle fly Megaselia abdita (Phoridae) and compared the BMP activity profiles between M. abdita and D. melanogaster. In blastoderm embryos of both species, BMP activity peaked at the dorsal midline. However, at the beginning of gastrulation, peak BMP activity in M. abdita shifted towards prospective amnion tissue. This transition correlated with the first signs of amnion differentiation laterally adjacent to the serosa anlage. Marker-assisted analysis of six BMP signaling components (dpp, gbb, scw, tkv, sax, sog) by RNA interference revealed that both serosa and amnion specification of M. abdita are dependent on BMP activity. Conversely, BMP gain-of-function experiments caused sharpened expression boundaries of extra-embryonic target genes indicative of positive feedback. We propose that changes in the BMP activity profile at the beginning of gastrulation might have contributed to the reduction of extra-embryonic tissue types during the radiation of cyclorrhaphan flies.


Asunto(s)
Amnios/embriología , Proteínas Morfogenéticas Óseas/metabolismo , Dípteros/embriología , Dípteros/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Insectos/metabolismo , Membrana Serosa/embriología , Membrana Serosa/metabolismo , Amnios/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética
13.
Adv Exp Med Biol ; 689: 133-44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20795328

RESUMEN

Insects have undergone dramatic evolutionary changes in extraembryonic development, which correlate with changes in the expression of the class-3 Hox gene zen. Here, we review the evolution of this gene in insects and point out how changes in zen expression may have affected extraembryonic development at the morphological and the genetic level.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Insectos , Animales , Epitelio/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Insectos/anatomía & histología , Insectos/embriología , Insectos/genética , Filogenia
14.
Dev Biol ; 341(1): 282-90, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20144604

RESUMEN

The amnioserosa is an extraembryonic epithelium that evolved in higher cyclorrhaphan flies from distinct serosal and amniotic epithelia. The underlying genetic mechanism of this evolutionary transition is unknown. Amnioserosa development of Drosophila correlates with novel expression characteristics of the homeobox gene zerknüllt (zen), including a broad zen expression domain in the syncytial blastoderm and the complete absence of postgastrular zen expression. Here we examine the functional significance of these features by altering the activity profile of zen in Megaselia (a lower cyclorrhaphan fly with distinct serosal and amniotic epithelia) and Drosophila, and by examining in Megaselia the function of u-shaped group (ush-group) genes, which in Drosophila maintain the amnioserosa after gastrulation when zen is no longer expressed. In Megaselia, loss of postgastrular zen expression abrogates serosa development but allows amnion development. Ectopic expression of zen in early Megaselia embryos allows serosa formation but perturbs amnion development. Megaselia homologues of u-shaped group genes are not essential for serosa formation but mediate germband retraction and dorsal closure. Finally, ectopic postgastrular zen expression in Drosophila causes an enlargement of amnioserosa cells and interferes with the morphogenetic functions of the amnioserosa. Our results suggest that the origin of the amnioserosa involved the loss of postgastrular zen expression from extraembryonic tissue, that the early broad expression domain of Drosophila zen evolved afterwards, and that the ush-group genes ancestrally played a role in morphogenetic functions of the amnion.


Asunto(s)
Dípteros/embriología , Proteínas de Homeodominio/metabolismo , Animales , Dípteros/genética , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Dev Genes Evol ; 219(4): 207-10, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19308443

RESUMEN

We discovered extremely small genomes (1C ~100 Mb) in the dipteran insects Coboldia fuscipes (Scatopsidae) and Psychoda cinerea (Psychodidae). The small genomes of these species cannot be explained by a fast developmental rate, which has been shown to correlate with small genome sizes in animals and plants but might accommodate the combined effects of other developmental traits, including small egg size, thin blastoderm layer, and long-germ development.


Asunto(s)
Dípteros/embriología , Dípteros/genética , Genoma de los Insectos , Animales , Dípteros/clasificación , Femenino , Masculino
16.
Evol Dev ; 10(4): 413-20, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18638318

RESUMEN

The homeobox gene bicoid functions as an anterior pattern organizer of the Drosophila embryo, but other than in higher flies (Cyclorrhapha), bicoid orthologues appear to be absent from insect genomes. In Drosophila, bicoid is expressed in an anterior-to-posterior protein gradient and regulates spatially restricted expression domains of segmentation genes in a concentration-dependent manner. hunchback, a direct transcriptional target of Bicoid, complements the "morphogen" activity of Bicoid. hunchback is activated by Bicoid throughout the anterior half of the blastoderm and a Bicoid-binding cis-regulatory element has been identified immediately upstream of the proximal hunchback promoter P2 of Drosophila and other higher Cyclorrhapha (Schizophora). bicoid and Bicoid-dependent hunchback regulation are thought to have originated during or before the radiation of extant Cyclorrhapha, although the precise occurrence of these traits in lower Cyclorrhapha remains unknown. Previously, we have described a bicoid orthologue in Megaselia, a species of the lower cyclorrhaphan family Phoridae. Here, we report the occurrence of bicoid in two additional lower cyclorrhaphan families, Lonchopteridae and Platypezidae. We show that Megaselia Bicoid is required for anterior expression of Megaselia hunchback, and binds upstream of its P2 promoter. Furthermore, we report the expression of lacZ reporter constructs under the control of hunchback regulatory sequences from a range of lower cyclorrhaphan and non-cyclorrhaphan flies in transgenic Drosophila embryos. Our results are consistent with a cyclorrhaphan origin of bicoid and suggest that a Bicoid-binding enhancer upstream of the hunchback P2 promoter evolved at the latest in the last common ancestor of Megaselia and Schizophora.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Dípteros/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Proteínas de Insectos/fisiología , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Blastodermo/metabolismo , Proteínas de Unión al ADN/genética , Dípteros/embriología , Dípteros/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Evolución Molecular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
17.
Proc Natl Acad Sci U S A ; 105(1): 234-9, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18172205

RESUMEN

Higher cyclorrhaphan flies including Drosophila develop a single extraembryonic epithelium (amnioserosa), which closes the germband dorsally. In most other insects two extraembryonic epithelia, serosa and amnion, line the inner eggshell and the ventral germband, respectively. How the two extraembryonic epithelia evolved into one is unclear. Recent studies have shown that, in the flour beetle Tribolium and in the milkweed bug Oncopeltus, the homeobox gene zerknüllt (zen) controls the fusion of the amnion with the serosa before dorsal closure. To understand the origin of the amnioserosa in evolution, we examined the expression and function of zen in the extraembryonic tissue of lower Cyclorrhapha. We show that Megaselia abdita (Phoridae) and Episyrphus balteatus (Syrphidae) develop a serosa and a dorsal amnion, suggesting that a dorsal amnion preceded the origin of the amnioserosa in evolution. Using Krüppel (Kr) and pannier (pnr) homologues of Megaselia as markers for serosal and amniotic tissue, respectively, we show that after zen RNAi all extraembryonic tissue becomes indistinguishable from amniotic cells, like in Tribolium but unlike in Drosophila, in which zen controls all aspects of extraembryonic development. Compared with Megaselia and Episyrphus, zen expression in Drosophila is extended to cells that form the amnion in lower Cyclorrhapha and is down-regulated at the developmental stage, when serosa cells in lower Cyclorrhapha begin to expand. These expression differences between species with distinct extraembryonic tissue organizations and the conserved requirement of zen for serosa development suggest that the origin of an amnioserosa-like epithelium was accompanied by expression changes of zen.


Asunto(s)
Amnios/embriología , Blastodermo/metabolismo , Dípteros/embriología , Drosophila/genética , Drosophila/fisiología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Amnios/metabolismo , Animales , Dípteros/metabolismo , Drosophila/metabolismo , Embrión no Mamífero/fisiología , Epitelio/embriología , Epitelio/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Interferencia de ARN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...