Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17080, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816819

RESUMEN

A series of carbon-doped ZnO [Zn1-yCyO (0.00 ≤ y ≤ 0.10)] nanorods were synthesized using a cost-effective low-temperature (85 °C) dip coating technique. X-ray diffractometer scans of the samples revealed the hexagonal structure of the C-doped ZnO samples, except for y = 0.10. XRD analysis confirmed a decrease in the unit cell volume after doping C into the ZnO matrix, likely due to the incorporation of carbon at oxygen sites (CO defects) resulting from ionic size differences. The morphological analysis confirmed the presence of hexagonal-shaped nanorods. X-ray photoelectron spectroscopy identified C-Zn-C bonding, i.e., CO defects, Zn-O-C bond formation, O-C-O bonding, oxygen vacancies, and sp2-bonded carbon in the C-doped ZnO structure with different compositions. We analyzed the deconvoluted PL visible broadband emission through fitted Gaussian peaks to estimate various defects for electron transition within the bandgap. Raman spectroscopy confirmed the vibrational modes of each constituent. We observed a stronger room-temperature ferromagnetic nature in the y = 0.02 composition with a magnetization of 0.0018 emu/cc, corresponding to the highest CO defects concentration and the lowest measured bandgap (3.00 eV) compared to other samples. Partial density of states analysis demonstrated that magnetism from carbon is dominant due to its p-orbitals. We anticipate that if carbon substitutes oxygen sites in the ZnO structure, the C-2p orbitals become localized and create two holes at each site, leading to enhanced p-p type interactions and strong spin interactions between carbon atoms and carriers. This phenomenon can stabilize the long-range order of room-temperature ferromagnetism properties for spintronic applications.

2.
Small ; 18(52): e2204302, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36251779

RESUMEN

Photoluminescence (PL) in state-of-the-art 2D materials suffers from narrow spectral coverage, relatively broad linewidths, and poor room-temperature (RT) functionality. The authors report ultra-narrow linewidth photo-emitters (ULPs) across the visible to near-infrared wavelength at RT in polymorphic selenium nanoflakes (SeNFs), synthesized via a hot-pressing strategy. Photo-emitters in NIR exhibit full width at half maximum (Γ) of 330 ± 90 µeV, an order of magnitude narrower than the reported ULPs in 2D materials at 300 K, and decrease to 82 ± 70 µeV at 100 K, with coherence time (τc ) of 21.3 ps. The capping substrate enforced spatial confinement during thermal expansion at 250 °C is believed to trigger a localized crystal symmetry breaking in SeNFs, causing a polymorphic transition from the semiconducting trigonal (t) to quasi-metallic orthorhombic (orth) phase. Fine structure splitting in orth-Se causes degeneracy in defect-associated bright excitons, resulting in ultra-sharp emission. Combined theoretical and experimental findings, an optimal biaxial compressive strain of -0.45% cm-1 in t-Se is uncovered, induced by the coefficient of thermal expansion mismatch at the selenium/sapphire interface, resulting in bandgap widening from 1.74 to 2.23 ± 0.1 eV. This report underpins the underlying correlation between crystal symmetry breaking induced polymorphism and RT ULPs in SeNFs, and their phase change characteristics.

3.
Biosensors (Basel) ; 12(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35735558

RESUMEN

The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Animales , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , SARS-CoV-2
4.
Nat Commun ; 12(1): 5342, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504094

RESUMEN

Superconductivity and charge density wave (CDW) appear in the phase diagram of a variety of materials including the high-Tc cuprate family and many transition metal dichalcogenides (TMDs). Their interplay may give rise to exotic quantum phenomena. Here, we show that superconducting arrays can spontaneously form in TiSe2-a TMD with coexisting superconductivity and CDW-after lithium ion intercalation. We induce a superconducting dome in the phase diagram of LixTiSe2 by using the ionic solid-state gating technique. Around optimal doping, we observe magnetoresistance oscillations, indicating the emergence of periodically arranged domains. In the same temperature, magnetic field and carrier density regime where the resistance oscillations occur, we observe signatures for the anomalous metal-a state with a resistance plateau across a wide temperature range below the superconducting transition. Our study not only sheds further insight into the mechanism for the periodic electronic structure, but also reveals the interplay between the anomalous metal and superconducting fluctuations.

5.
Nano Lett ; 19(11): 7775-7780, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31664842

RESUMEN

Ion injection controlled by electric field has attracted growing attention due to its tunability over bulk-like materials. Here, we achieve protonation of an electron-doped high-temperature superconductor, La2-xCexCuO4, by gating in the electrochemical regime of the ionic liquid. Such a process induces a superconductor-insulator transition together with the crossing of the Fermi surface reconstruction point. Applying negative voltages not only can reverse the protonation process but also recovers superconductivity in samples deteriorated by moisture in the ambient. Our work extends the application of electric-field-induced protonation into high-temperature cuprate superconductors.

6.
Dalton Trans ; 48(27): 10275-10287, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31206111

RESUMEN

The search for new multiferroic materials is on the rise due to their potential applications in an advanced generation of highly efficient multifunctional devices. Here we report a series of PbTi1-xFexO3 (0 ≤x≤ 0.5) samples prepared by a solid-state reaction method. Structural analysis suggests that doping of Fe introduces oxygen vacancies along the c-axis (aliovalent substitution; Fe3+→ Ti4+), local distortions and microstrains in the PbTiO3 lattice which triggered the partial structural transformation from tetragonal to cubic. This has been confirmed using structural analysis tools such as X-ray diffraction, Fourier Transform Infrared Spectroscopy, Raman spectroscopy, and Mössbauer spectroscopy. The presence of oxygen vacancies was further confirmed by refining the site occupancies through Rietveld refinement. Mössbauer measurements confirmed that Fe ions exist in the 3+ state and change in coordination of some Fe3+ ions from octahedral to tetrahedral points towards the oxygen deficiency in the system. Raman studies confirm the presence of all ordinary and quasi phonon modes in Fe doped PbTiO3 samples. The overlapping and weakening of modes are related to the structural changes/transformation. The modes' shifting to lower wavenumbers is ascribed to the increase in the average atomic mass at Ti-sites. The induced ferromagnetism in the system increases with an increase in the Fe content and can be explained on the basis of the F-center exchange mechanism. Moreover, we found an anomalous temperature-dependent trend in the magnetic coercivity (decrease in coercivity as the temperature is decreased) which can be explained in terms of a low-temperature decrease in an effective magnetic anisotropy when the effects of magneto-electric coupling are included. The existence of well-developed ferroelectric and ferromagnetic hysteresis loops confirmed the multiferroic nature of the system. The increase in the value of the dielectric constant at 1 MHz with an increase in the Fe content is attributed to the increase in resistivity of the system due to the formation of immobile defect dipole complexes.

7.
Sci Total Environ ; 665: 668-677, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30776639

RESUMEN

The present study for the first time reports facile in-situ room temperature synthesis of butterfly cluster like lamellar BiOBr deposited over TiO2 nanoparticles for photocatalytic breakdown of ciprofloxacin (CIP). The butterfly cluster arrangement of BiOBr resulted in an increase in surface area from 124.6 to 160.797 m2·g-1 and subsequently increased incident light absorption by the composite photocatalyst. The XRD indicated the existence of TiO2 as spherical ≈10-15 nm diameter particles with [101] preferential growth planes of anatase phase while the lamellar BiOBr showing growth along [110] and [102] preferential planes that were also confirmed by the HR-TEM images. DRS data implicated 2.76 eV as the energy band gap of the synthesized nanocomposite while PL spectroscopic analysis predicted it to be 2.81 eV. XPS measurements examined the chemical oxidation states of the constituents among the nanocomposite samples. The lameller structure of BiOBr in 15%BiOBr/TiO2 acts as a manifold promoting both visible light (λ > 420 nm) and direct sunlight catalytic degradation of 25 mg·L-1 aqueous CIP up to 92.5% and 100%, respectively within 150 min. The rate constant values suggested that the visible light photocatalysis of CIP with 15%BiOBr/TiO2 was 5.2 and 9.4 times faster compared to pristine TiO2 and BiOBr, respectively. The free radical scavenging study demonstrated that although photogenerated superoxide ions and holes contribute to the overall photocatalytic activity, yet, hydroxyl radicals predominantly control the CIP oxidation. The synthesized nanocomposite was re-used up to five cycles and retained 82.98% efficiency even after 5th use cycle showing a decline of only 12%. The catalyst stability and easy recovery adds to its reusability and value of the photocatalytic process.


Asunto(s)
Bismuto/química , Ciprofloxacina/análisis , Nanocompuestos/química , Fotólisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Luz Solar
9.
RSC Adv ; 8(22): 11935-11945, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35539408

RESUMEN

A novel visible light active TiO2/FeS2 semiconductor photocatalyst was synthesized by a simple wet chemical process. X-ray diffraction (XRD) was used to analyze the anatase TiO2 and pyrite structures in FeS2/TiO2 nanocrystals. Scanning electron microscopy (SEM) confirmed the spherical morphology of composite nanocrystals. X-ray photoelectron spectroscopy (XPS) identified the Fe2+, S1-, Ti4+, and O2- oxidation states of relevant species. Energy dispersive X-ray (EDX) analysis was performed for compositional analysis. The measured band gap of the TiO2/FeS2 nanocomposite system was 2.67 eV, which is smaller than un-doped TiO2 (3.10 eV) and larger than FeS2 (1.94 eV). The photocatalytic activity of TiO2/FeS2 was significantly higher than pure FeS2 for degrading methylene blue (MB) under solar light irradiation due to the increase in visible light absorption, reduction in band gap energy, and better election-hole pair separation. The photocatalytic degradation of MB was investigated under the influence of solution pH, dye concentrations, and varied catalyst dosage. The optimum degradation (100%) of MB was observed in 180 min and the photocatalysis of MB reduced as the dye concentrations in the solution increased from 15 to 75 mg L-1. These results prove that the TiO2/FeS2 nanocomposite has the stability, recycling, and adaptability for its practical application as a visible light photocatalyst for wastewater treatment. TiO2/FeS2 showed increased degradation of the organic pollutant; which is confirmed by the increased rate of chemical reaction following pseudo first-order reaction kinetics with the highest rate constant value of 0.0408 m-1 having highest R 2 value of 0.9981.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...