Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539110

RESUMEN

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Asunto(s)
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Polvos , Flavonoides/metabolismo , Fenoles/metabolismo , Semillas/metabolismo
2.
Physiol Mol Biol Plants ; 26(11): 2209-2223, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33268924

RESUMEN

Salinity is a critical issue impairing the growth and productivity of most crop species through the mediated ionic and osmotic imbalances. As a way forward, the current study was tailored to elucidate the capacity of sulfur nanoparticles (SNPs) to amend salinity consequences on growth and physio-biochemical attributes of wheat. In a controlled experiment, wheat seeds were primed for 12 h with either 100 µM SNPs or deionized water then sown in plastic pots containing 5 kg clay-sand mixture (2:1 w/w). A week later, pots received NaCl (100 or 200 mM) as a sole treatment or in combination with SNPs and after three weeks the data of morph-bio-physiological traits were recorded. Salinity decreased growth rate, pigmentation, protein, amino acids, cysteine, ascorbate, flavonoids and phenolics content in wheat leaves. Plants pre-treated with 100 µM SNPs showed improved growth rate, pigmentation, nitrogen metabolism as well as non-enzymatic antioxidant contents as compared with salinized treatments. Neither salt nor SNP treatments affected photosynthetic performance rate (Fv/fm), however both treatments induced glutathione content. SNP treatment retrieved the undue excessive activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) besides the increased level of proline caused by salt stress. Likewise, 100 µM SNPs rebalanced the declined nitrogen, phosphorus and potassium contents and decreased sodium uptake caused by salinity. On the whole, priming with 100 µM SNPs improved photosynthetic pigments, nitrogen metabolism, antioxidant status and ionic relations contributing to the enhancement of growth attributes in wheat under salinity.

3.
Ecotoxicol Environ Saf ; 191: 110242, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32004945

RESUMEN

A novel green approach was utilized to fabricate sulfur nanoparticles (SNPs) with the aid of Ocimum basilicum leaves extract. The effective formation of the synthesized SNPs was examined and approved using UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The average particle size was 23 nm with spherical shape and crystalline in nature. In the pot experiment, the synthesized SNPs were applied with different concentrations (12.5, 25, 50, 100 and 200 µM) as pre-soaking to Helianthus annuus seeds and irrigated with 100 mM MnSO4. As a result of manganese (Mn) exposure, the harvested 14-day sunflower seedlings showed a significant decline in the growth parameters (shoot length, leaf area and the relative water content of both shoot and root), photosynthetic pigments, mineral content (N, P, K, Ca, and Mg), and protein content compared to the control. The root length, electrolyte leakage, Na and Mn levels, metabolites content (amino acids, protein, glycine betaine, proline, and cysteine) were greatly raised as affected by Mn stress. Mn toxicity reduction using SNPs was demonstrated, as the medium doses enhanced seedlings growth, photosynthetic pigments, and mineral nutrients. Application of SNPs decreased Mn uptake and enhanced S metabolism through increasing cysteine level. Likewise, SNPs elevated seedlings water content and eliminated physiological drought via increasing osmolytes such as amino acids and proline. It can be concluded that green-synthesized SNPs had the potential to limit the deleterious effects of Mn stress.


Asunto(s)
Helianthus , Manganeso/toxicidad , Nanopartículas/química , Ocimum basilicum/química , Azufre/farmacología , Tecnología Química Verde , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Tamaño de la Partícula , Fotosíntesis/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química , Prolina/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Azufre/química , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...