Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3392, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296100

RESUMEN

Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.


Asunto(s)
Amidohidrolasas , Arginina , Ratones , Animales , Amidohidrolasas/metabolismo , Arginina/metabolismo , Óxido Nítrico/metabolismo
2.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36792833

RESUMEN

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Asunto(s)
Anfetamina , Dopamina , Animales , Femenino , Ratones , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Anfetamina/farmacología , Inhibidores Enzimáticos/farmacología , Genotipo , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética
3.
Cell Mol Neurobiol ; 42(7): 2273-2288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34014421

RESUMEN

The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.


Asunto(s)
Isoenzimas , Óxido Nítrico , Amidohidrolasas , Animales , Sistema Nervioso Central , Humanos , Ratones
4.
Am J Physiol Heart Circ Physiol ; 321(5): H825-H838, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533401

RESUMEN

Cardiovascular complications are the leading cause of death, and elevated levels of asymmetric dimethyarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are implicated in their pathophysiology. We investigated the role of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme hydrolyzing ADMA, in prevention of cardiovascular remodeling during hypertension. We hypothesized that the animals overexpressing DDAH1 will be protected from angiotensin II (ANG II)-induced end organ damage. Angiotensin II (ANG II) was infused in two doses: 0.75 and 1.5 mg/kg/day in DDAH1 transgenic mice (DDAH1 TG) and wild-type (WT) littermates for 2 or 4 wk. Echocardiography was performed in the first and fourth weeks of the infusion, systolic blood pressure (SBP) was measured weekly, and cardiac hypertrophy and vascular remodeling was assessed by histology. Increase in SBP after 1 wk of ANG II infusion was not different between the groups, whereas TG mice had lower SBP at later time points. TG mice were protected from cardiovascular remodeling after 2 wk of ANG II infusion in the high dose and after 4 wk in the moderate dose. TG mice had higher left ventricular lumen-to-wall ratio, lower cardiomyocyte cross-sectional area, and less interstitial fibrosis compared with WT controls. In aorta, TG mice had less adventitial fibrosis, lower medial thickness with preserved elastin content, lower counts of inflammatory cells, lower levels of active matrix metalloproteinase-2, and showed better endothelium-dependent relaxation. We demonstrated that overexpression of DDAH1 protects from ANG II-induced cardiovascular remodeling and progression of hypertension by preserving endothelial function and limiting inflammation.NEW & NOTEWORTHY We showed that overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects from angiotensin II-induced cardiovascular damage, progression of hypertension, and adverse vascular remodeling in vivo. This protective effect is associated with decreased levels of asymmetric dimethylarginine, preservation of endothelial function, inhibition of cardiovascular inflammation, and lower activity of matrix metalloproteinase-2. Our findings are highly clinically relevant, because they suggest that upregulation of DDAH1 might be a promising therapeutic approach against angiotensin II-induced end organ damage.


Asunto(s)
Amidohidrolasas/biosíntesis , Aorta/enzimología , Presión Sanguínea , Ventrículos Cardíacos/enzimología , Hipertensión/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Remodelación Vascular , Función Ventricular Izquierda , Remodelación Ventricular , Amidohidrolasas/genética , Angiotensina II , Animales , Aorta/patología , Aorta/fisiopatología , Modelos Animales de Enfermedad , Inducción Enzimática , Fibrosis , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/patología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Tiempo , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...