Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405697

RESUMEN

Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations.

2.
Clin Cancer Res ; 29(24): 5047-5056, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37819936

RESUMEN

PURPOSE: Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS: Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS: Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS: No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Estudios de Cohortes , Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
Clin Cancer Res ; 29(22): 4627-4643, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37463056

RESUMEN

PURPOSE: Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents. EXPERIMENTAL DESIGN: We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer. RESULTS: Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases. CONCLUSIONS: This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Mutación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
4.
Gastroenterology ; 165(4): 874-890.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263309

RESUMEN

BACKGROUND & AIMS: Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS: We evaluated the TGFß-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS: Blockade of TGFß with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFß blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFß blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFß blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFß blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS: TGFß regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFß blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Antineoplásicos/uso terapéutico , Gemcitabina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Albúminas , Factores de Crecimiento Transformadores/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Cell Rep Med ; 4(4): 101007, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030295

RESUMEN

Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
6.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747859

RESUMEN

High-throughput phenotypic screens leveraging biochemical perturbations, high-content readouts, and complex multicellular models could advance therapeutic discovery yet remain constrained by limitations of scale. To address this, we establish a method for compressing screens by pooling perturbations followed by computational deconvolution. Conducting controlled benchmarks with a highly bioactive small molecule library and a high-content imaging readout, we demonstrate increased efficiency for compressed experimental designs compared to conventional approaches. To prove generalizability, we apply compressed screening to examine transcriptional responses of patient-derived pancreatic cancer organoids to a library of tumor-microenvironment (TME)-nominated recombinant protein ligands. Using single-cell RNA-seq as a readout, we uncover reproducible phenotypic shifts induced by ligands that correlate with clinical features in larger datasets and are distinct from reference signatures available in public databases. In sum, our approach enables phenotypic screens that interrogate complex multicellular models with rich phenotypic readouts to advance translatable drug discovery as well as basic biology.

7.
Oncologist ; 28(5): 425-432, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807743

RESUMEN

BACKGROUND: In preclinical pancreatic ductal adenocarcinoma (PDAC) models, inhibition of hepatocyte growth factor (HGF) signaling using ficlatuzumab, a recombinant humanized anti-HGF antibody, and gemcitabine reduced tumor burden. METHODS: Patients with previously untreated metastatic PDAC enrolled in a phase Ib dose escalation study with 3 + 3 design of 2 dose cohorts of ficlatuzumab 10 and 20 mg/kg administered intravenously every other week with gemcitabine 1000 mg/m2 and albumin-bound paclitaxel 125 mg/m2 given 3 weeks on and 1 week off. This was followed by an expansion phase at the maximally tolerated dose of the combination. RESULTS: Twenty-six patients (sex, 12 male:14 female; median age, 68 years [range, 49-83 years]) were enrolled, 22 patients were evaluable. No dose-limiting toxicities were identified (N = 7 pts) and ficlatuzumab at 20 mg/kg was chosen as the maximum tolerated dose. Among the 21 patients treated at the MTD, best response by RECISTv1.1: 6 (29%) partial response, 12 (57%) stable disease, 1 (5%) progressive disease, and 2 (9%) not evaluable. Median progression-free survival and overall survival times were 11.0 months (95% CI, 7.6-11.4 months) and 16.2 months (95% CI, 9.1 months to not reached), respectively. Toxicities attributed to ficlatuzumab included hypoalbuminemia (grade 3, 16%; any grade, 52%) and edema (grade 3, 8%; any grade, 48%). Immunohistochemistry for c-Met pathway activation demonstrated higher tumor cell p-Met levels in patients who experienced response to therapy. CONCLUSION: In this phase Ib trial, ficlatuzumab, gemcitabine, and albumin-bound paclitaxel were associated with durable treatment responses and increased rates of hypoalbuminemia and edema.


Asunto(s)
Hipoalbuminemia , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Anciano , Gemcitabina , Paclitaxel Unido a Albúmina , Hipoalbuminemia/inducido químicamente , Paclitaxel/efectos adversos , Neoplasias Pancreáticas/patología , Albúminas/efectos adversos , Edema/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Pancreáticas
9.
Cancer Res ; 83(3): 441-455, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36459568

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has been classified into classical and basal-like transcriptional subtypes by bulk RNA measurements. However, recent work has uncovered greater complexity to transcriptional subtypes than was initially appreciated using bulk RNA expression profiling. To provide a deeper understanding of PDAC subtypes, we developed a multiplex immunofluorescence (mIF) pipeline that quantifies protein expression of six PDAC subtype markers (CLDN18.2, TFF1, GATA6, KRT17, KRT5, and S100A2) and permits spatially resolved, single-cell interrogation of pancreatic tumors from resection specimens and core needle biopsies. Both primary and metastatic tumors displayed striking intratumoral subtype heterogeneity that was associated with patient outcomes, existed at the scale of individual glands, and was significantly reduced in patient-derived organoid cultures. Tumor cells co-expressing classical and basal markers were present in > 90% of tumors, existed on a basal-classical polarization continuum, and were enriched in tumors containing a greater admixture of basal and classical cell populations. Cell-cell neighbor analyses within tumor glands further suggested that co-expressor cells may represent an intermediate state between expression subtype poles. The extensive intratumoral heterogeneity identified through this clinically applicable mIF pipeline may inform prognosis and treatment selection for patients with PDAC. SIGNIFICANCE: A high-throughput pipeline using multiplex immunofluorescence in pancreatic cancer reveals striking expression subtype intratumoral heterogeneity with implications for therapy selection and identifies co-expressor cells that may serve as intermediates during subtype switching.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Pronóstico , Fenotipo , ARN , Regulación Neoplásica de la Expresión Génica , Claudinas
10.
NPJ Precis Oncol ; 6(1): 61, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056177

RESUMEN

The mutant IDH1 inhibitor ivosidenib improves outcomes for patients with IDH1-mutated cholangiocarcinoma, but resistance inevitably develops. Mechanisms of resistance and strategies to overcome resistance are poorly understood. Here we describe two patients with IDH1 R132C-mutated metastatic cholangiocarcinoma who developed acquired resistance to ivosidenib. After disease progression, one patient developed an oncogenic IDH2 mutation, and the second patient acquired a secondary IDH1 D279N mutation. To characterize the putative IDH1 resistance mutation, cells expressing the double-mutant were generated. In vitro, IDH1 R132H/D279N produces (R)-2HG less efficiently than IDH1 R132H. However, its binding to ivosidenib is impaired and it retains the ability to produce (R)-2HG and promote cellular transformation in the presence of ivosidenib. The irreversible mutant IDH1 inhibitor LY3410738 binds and blocks (R)-2HG production and cellular transformation by IDH1 R132H/D279N. These resistance mechanisms suggest that IDH1-mutated cholangiocarcinomas remain dependent on (R)-2HG even after prolonged ivosidenib treatment. Sequential mutant IDH inhibitor therapy should be explored as a strategy to overcome acquired resistance to mutant IDH inhibitors.

11.
Glob Chang Biol ; 28(21): 6385-6403, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054815

RESUMEN

Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modeling for the period 2041-2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < .05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China, and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience nonsignificant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation.


Asunto(s)
Sequías , Agua , China , Suelo , Ciclo Hidrológico
12.
Nat Commun ; 13(1): 3181, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676246

RESUMEN

The RNF43_p.G659fs mutation occurs frequently in colorectal cancer, but its function remains poorly understood and there are no specific therapies directed against this alteration. In this study, we find that RNF43_p.G659fs promotes cell growth independent of Wnt signaling. We perform a drug repurposing library screen and discover that cells with RNF43_p.G659 mutations are selectively killed by inhibition of PI3K signaling. PI3K/mTOR inhibitors yield promising antitumor activity in RNF43659mut isogenic cell lines and xenograft models, as well as in patient-derived organoids harboring RNF43_p.G659fs mutations. We find that RNF43659mut binds p85 leading to increased PI3K signaling through p85 ubiquitination and degradation. Additionally, RNA-sequencing of RNF43659mut isogenic cells reveals decreased interferon response gene expression, that is reversed by PI3K/mTOR inhibition, suggesting that RNF43659mut may alter tumor immunity. Our findings suggest a therapeutic application for PI3K/mTOR inhibitors in treating RNF43_p.G659fs mutant cancers.


Asunto(s)
Neoplasias Colorrectales , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Ubiquitina-Proteína Ligasas , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890551

RESUMEN

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Anciano , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual
14.
Clin Cancer Res ; 27(24): 6622-6637, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34285063

RESUMEN

Pancreatic cancer is rapidly progressive and notoriously difficult to treat with cytotoxic chemotherapy and targeted agents. Recent demonstration of the efficacy of maintenance PARP inhibition in germline BRCA mutated pancreatic cancer has raised hopes that increased understanding of the DNA damage response pathway will lead to new therapies in both homologous recombination (HR) repair-deficient and proficient pancreatic cancer. Here, we review the potential mechanisms of exploiting HR deficiency, replicative stress, and DNA damage-mediated immune activation through targeted inhibition of DNA repair regulatory proteins.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/genética , Reparación del ADN , Recombinación Homóloga , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación/genética
15.
Cancer Discov ; 11(10): 2488-2505, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33926920

RESUMEN

We conducted next-generation DNA sequencing on 335 biliary tract cancers and characterized the genomic landscape by anatomic site within the biliary tree. In addition to frequent FGFR2 fusions among patients with intrahepatic cholangiocarcinoma (IHCC), we identified FGFR2 extracellular domain in-frame deletions (EID) in 5 of 178 (2.8%) patients with IHCC, including two patients with FGFR2 p.H167_N173del. Expression of this FGFR2 EID in NIH3T3 cells resulted in constitutive FGFR2 activation, oncogenic transformation, and sensitivity to FGFR inhibitors. Three patients with FGFR2 EIDs were treated with Debio 1347, an oral FGFR1/2/3 inhibitor, and all showed partial responses. One patient developed an acquired L618F FGFR2 kinase domain mutation at disease progression and experienced a further partial response for 17 months to an irreversible FGFR2 inhibitor, futibatinib. Together, these findings reveal FGFR2 EIDs as an alternative mechanism of FGFR2 activation in IHCC that predicts sensitivity to FGFR inhibitors in the clinic. SIGNIFICANCE: FGFR2 EIDs are transforming genomic alterations that occur predominantly in patients with IHCC. These FGFR2 EIDs are sensitive to FGFR inhibition in vitro, and patients with these alterations benefited from treatment with FGFR inhibitors in the clinic.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Adulto Joven
16.
Cancer Cell ; 38(2): 198-211.e8, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32559497

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Empalme del ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tratamiento con ARN de Interferencia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
17.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251410

RESUMEN

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Movimiento Celular , Proteína Doblecortina , Quinasas Similares a Doblecortina , Ensayos de Selección de Medicamentos Antitumorales , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacocinética , Proteómica , Ratas , Relación Estructura-Actividad , Pez Cebra , Neoplasias Pancreáticas
18.
Nanoscale ; 11(44): 21317-21323, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31670340

RESUMEN

There is a critical need for the development of safe and efficient delivery technologies for CRISPR/Cas9 to advance translation of genome editing to the clinic. Non-viral methods that are simple, efficient, and completely based on biologically-derived materials could offer such potential. Here we report a simple and modular tandem peptide-based nanocomplex system with cell-targeting capacity that efficiently combines guide RNA (sgRNA) with Cas9 protein, and facilitates internalization of sgRNA/Cas9 ribonucleoprotein complexes to yield robust genome editing across multiple cell lines.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Transferencia de Gen , Células HeLa , Humanos
19.
Cell Rep ; 29(1): 118-134.e8, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577942

RESUMEN

The mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level. Multiple members of receptor tyrosine kinase (RTK)-RAS-MAPK pathways scored as sensitizers to MEKi. In particular, we demonstrate that knockout, suppression, or degradation of SHOC2, a positive regulator of MAPK signaling, specifically cooperated with MEK inhibition to impair proliferation in RAS-driven cancer cells. The depletion of SHOC2 disrupted survival pathways triggered by feedback RTK signaling in response to MEK inhibition. Thus, these findings nominate SHOC2 as a potential target for combination therapy.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Pelados , Ratones SCID , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
20.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31109923

RESUMEN

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Asunto(s)
Adenosina Trifosfato/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Anciano , Línea Celular Tumoral , Colangiocarcinoma/diagnóstico , ADN Tumoral Circulante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/química , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...