Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2832: 145-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869793

RESUMEN

Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.


Asunto(s)
Hojas de la Planta , Estrés Fisiológico , Hojas de la Planta/metabolismo , Fotosíntesis , Cloroplastos/metabolismo , Estrés Oxidativo , Pruebas de Enzimas/métodos , Respiración de la Célula , Vitamina K 3/farmacología , Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Luz
2.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38516911

RESUMEN

Stomatal guard cells are unique in that they have more mitochondria than chloroplasts. Several reports emphasized the importance of mitochondria as the major energy source during stomatal opening. We re-examined their role during stomatal closure. The marked sensitivity of stomata to both menadione (MD) and methyl viologen (MV) demonstrated that both mitochondria and chloroplasts helped to promote stomatal closure in Arabidopsis. As in the case of abscisic acid (ABA), a plant stress hormone, MD and MV induced stomatal closure at micromolar concentration. All three compounds generated superoxide and H2O2, as indicated by fluorescence probes, BES-So-AM and CM-H2DCFDA, respectively. Results from tiron (a superoxide scavenger) and catalase (an H2O2 scavenger) confirmed that both the superoxide and H2O2 were requisites for stomatal closure. Co-localization of the superoxide and H2O2 in mitochondria and chloroplasts using fluorescent probes revealed that exposure to MV initially triggered higher superoxide and H2O2 generation in mitochondria. In contrast, MD elevated superoxide/H2O2 levels in chloroplasts. However, with prolonged exposure, MD and MV induced ROS production in other organelles. We conclude that ROS production in mitochondria and chloroplasts leads to stomatal closure. We propose that stomatal guard cells can be good models for examining inter-organellar interactions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Superóxidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mitocondrias/metabolismo
3.
Protoplasma ; 261(1): 43-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37421536

RESUMEN

When plants are exposed to water stress, photosynthesis is downregulated due to enhanced reactive oxygen species (ROS) and nitric oxide (NO). In contrast, photorespiratory metabolism protected photosynthesis and sustained yield. Modulation of photorespiration by ROS was established, but the effect of NO on photorespiratory metabolism was unclear. We, therefore, examined the impact of externally added NO by using S-nitrosoglutathione (GSNO), a natural NO donor, in leaf discs of pea (Pisum sativum) under dark or light: moderate or high light (HL). Maximum NO accumulation with GSNO was under high light. The presence of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, prevented the increase in NO, confirming the release of NO in leaves. The increase in S-nitrosothiols and tyrosine-nitrated proteins on exposure to GSNO confirmed the nitrosative stress in leaves. However, the changes by GSNO in the activities and transcripts of five photorespiratory enzymes: glycolate oxidase, hydroxypyruvate reductase, catalase, glycerate kinase, and phosphoglycolate phosphatase activities were marginal. The changes in photorespiratory enzymes caused by GSNO were much less than those with HL. Since GSNO caused only mild oxidative stress, we felt that the key modulator of photorespiration might be ROS, but not NO.


Asunto(s)
Pisum sativum , S-Nitrosoglutatión , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/metabolismo
4.
J Plant Physiol ; 287: 154047, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393886

RESUMEN

We examined the patterns of photosynthetic O2 evolution at 1 mM (optimal) and 10 mM (supra-optimal) bicarbonate in mesophyll protoplasts of Arabidopsis thaliana. The photosynthetic rate of protoplasts reached the maximum at an optimal concentration of 1 mM bicarbonate and got suppressed at supra-optimal levels of bicarbonate. We examined the basis of such photosynthesis inhibition by mesophyll protoplasts at supra-optimal bicarbonate. The wild-type protoplasts exposed to supra-optimal bicarbonate showed up signs of oxidative stress. Besides the wild-type, two mutants were used: nadp-mdh (deficient in chloroplastic NADP-MDH) and vtc1 (deficient in mitochondrial ascorbate biosynthesis). The protoplasts of the nadp-mdh mutant exhibited a higher photosynthetic rate and greater sensitivity to supra-optimal bicarbonate than the wild-type. The ascorbate-deficient vtc1 mutant had a low photosynthetic rate and no significant inhibition at high bicarbonate. The nadp-mdh mutants had elevated activities, protein, and transcript levels of key antioxidant enzymes. On the other hand, the antioxidant enzyme systems in vtc1 mutants were not much affected at supra-optimal bicarbonate. We propose that the inhibition of photosynthesis at supra-optimal bicarbonate depends on the redox state of mesophyll protoplasts. The robust antioxidant enzyme systems in protoplasts of nadp-mdh mutant might be priming the plants to sustain high photosynthesis at supra-optimal bicarbonate.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antioxidantes/metabolismo , Bicarbonatos/metabolismo , NADP/metabolismo , Protoplastos/metabolismo , Fotosíntesis/fisiología , Oxidación-Reducción , Ácido Ascórbico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Plant J ; 113(1): 60-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36377283

RESUMEN

The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.


Asunto(s)
Sequías , Pisum sativum , Pisum sativum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo
7.
Physiol Mol Biol Plants ; 29(12): 1851-1861, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222271

RESUMEN

Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was expected to mitigate oxidative stress by reducing ROS levels. However, it was unclear if ROS levels would increase when photorespiration was lowered. Our goal was to examine the redox status in leaves when photorespiratory metabolism was restricted under low O2 (medium flushed with N2 gas) or by adding aminooxyacetic acid (AOA), a photorespiratory inhibitor. We examined the impact of low O2 and AOA in leaves of Arabidopsis thaliana under dark, moderate, or high light. Downregulation of typical photorespiratory enzymes, including catalase (CAT), glycolate oxidase (GO), and phosphoglycolate phosphatase (PGLP) under low O2 or with AOA confirmed the lowering of photorespiratory metabolism. A marked increase in ROS levels (superoxide and H2O2) indicated the induction of oxidative stress. Thus, our results demonstrated for the first time that restricted photorespiratory conditions increased the extent of oxidative stress. We propose that photorespiration is essential to sustain normal ROS levels and optimize metabolism in cellular compartments of Arabidopsis leaves. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01388-4.

9.
Front Pharmacol ; 12: 659546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276362

RESUMEN

Background: Curcuma spp. (Zingiberaceae) are used as a spice and coloring agent. Their rhizomes and essential oils are known for medicinal properties, besides their use in the flavoring and cosmetic industry. Most of these biological activities were attributed to volatile and nonvolatile secondary metabolites present in the rhizomes of Curcuma spp. The metabolite variations among the species and even cultivars need to be established for optimized use of Curcuma spp. Objectives: We compared the phytochemical profiles of rhizomes and their essential oils to establish the variability among seven cultivars: five of Curcuma longa L. (Alleppey Supreme, Duggirala Red, Prathibha, Salem, Suguna) and two of C. aromatica Salisb. (Kasturi Araku, Kasturi Avidi). The GC-MS and LC-MS-based analyses were employed to profile secondary metabolites of these selected cultivars. Methods: Rhizomes of Curcuma spp. were subjected to hydro-distillation to collect essential oil and analyzed by GC-MS. The methanol extracts of fresh rhizomes were subjected to LC-MS analyses. The compounds were identified by using the relevant MS library databases as many compounds as possible. Results: The essential oil content of the cultivars was in the range of 0.74-1.62%. Several compounds were detected from the essential oils and rhizome extracts by GC-MS and LC-MS, respectively. Of these, 28 compounds (13 from GCMS and 15 from LCMS) were common in all seven cultivars, e.g., α-thujene, and diarylheptanoids like curcumin. Furthermore, a total of 39 new compounds were identified from C. longa L. and/or C. aromatica Salisb., most of them being cultivar-specific. Of these compounds, 35 were detected by GC-MS analyses of essential oils, 1,2-cyclohexanediol, 1-methyl-4-(1-methylethyl)-, and santolina alcohol, to name a few. The other four compounds were detected by LC-MS of the methanolic extracts of the rhizomes, e.g., kaempferol-3,7-O-dimethyl ether and 5,7,8-trihydroxy-2',5'-dimethoxy-3',4'-methylene dioxyisoflavanone. Conclusions: We identified and recorded the variability in the metabolite profiles of essential oils and whole rhizome extracts from the seven cultivars of Curcuma longa L. and C. aromatica Salisb. As many as 39 new metabolites were detected in these seven Indian cultivars of Curcuma spp. Many of these compounds have health benefits.

10.
Plants (Basel) ; 10(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063541

RESUMEN

Photorespiration, an essential component of plant metabolism, is concerted across four subcellular compartments, namely, chloroplast, peroxisome, mitochondrion, and the cytoplasm. It is unclear how the pathway located in different subcellular compartments respond to stress occurring exclusively in one of those. We attempted to assess the inter-organelle interaction during the photorespiratory pathway. For that purpose, we induced oxidative stress by menadione (MD) in mitochondria and photo-oxidative stress (high light) in chloroplasts. Subsequently, we examined the changes in selected photorespiratory enzymes, known to be located in other subcellular compartments. The presence of MD upregulated the transcript and protein levels of five chosen photorespiratory enzymes in both normal and high light. Peroxisomal glycolate oxidase and catalase activities increased by 50% and 25%, respectively, while chloroplastic glycerate kinase and phosphoglycolate phosphatase increased by ~30%. The effect of MD was maximum in high light, indicating photo-oxidative stress was an influential factor to regulate photorespiration. Oxidative stress created in mitochondria caused a coordinative upregulation of photorespiration in other organelles. We provided evidence that reactive oxygen species are important signals for inter-organelle communication during photorespiration. Thus, MD can be a valuable tool to modulate the redox state in plant cells to study the metabolic consequences across membranes.

11.
Front Plant Sci ; 12: 615114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746999

RESUMEN

Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.

12.
J Ethnopharmacol ; 267: 113469, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075439

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases. AIM OF THE REVIEW: We present a critical overview of the information on the metabolomics of W. somnifera and highlight the significance of the technique for use in quality control of medicinal products. We have also pointed out the use of metabolomics to distinguish varieties and to identify best methods of cultivation, collection, as well as extraction. MATERIAL AND METHODS: The relevant information on medicinal value, phytochemical studies, metabolomics of W. somnifera, and their applications were collected from a rigorous electronic search through scientific databases, including Scopus, PubMed, Web of Science and Google Scholar. Structures of selected metabolites were from the PubChem. RESULTS: The pharmacological activities of W. somnifera were well documented. Roots are the most important parts of the plant used in Ayurvedic preparations. Stem and leaves also have a rich content of bioactive phytochemicals like steroidal lactones, alkaloids, and phenolic acids. Metabolomic studies revealed that metabolite profiles of W. somnifera depended on plant parts collected and the developmental stage of the plant, besides the season of sample collection and geographical location. The levels of withanolides were variable, depending on the morpho/chemotypes within the species of W. somnifera. Although studies on W. somnifera were initiated several years ago, the complexity of secondary metabolites was not realized due to the lack of adequate and fool-proof technology for phytochemical fingerprinting. Sophistications in chromatography coupled to mass spectrometry facilitated the discovery of several new metabolites. Mutually complementary techniques like LC-MS, GC-MS, HPTLC, and NMR were employed to obtain a comprehensive metabolomic profile. Subsequent data analyses and searches against spectral databases enabled the annotation of signals and dereplication of metabolites in several numbers without isolating them individually. CONCLUSIONS: The present review provides a critical update of metabolomic data and the diverse application of the technique. The identification of parameters for standardization and quality control of herbal products is essential to facilitate mandatory checks for the purity of formulation. Such studies would enable us to identify the best geographical location of plants and the time of collection. We recommend the use of metabolomic analysis of herbal products based on W. somnifera for quality control as well as the discovery of novel bioactive compounds.


Asunto(s)
Medicina Ayurvédica , Metaboloma , Metabolómica , Extractos Vegetales/aislamiento & purificación , Withania/metabolismo , Contaminación de Medicamentos , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/normas , Control de Calidad
13.
Plant Physiol Biochem ; 157: 276-283, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33152646

RESUMEN

Modulation by salicylic acid (SA) and its six esters of stomatal closure was evaluated in Arabidopsis thaliana. The seven compounds tested are salicylic acid (SA), acetylsalicylate (ASA), methyl salicylate (MeSA), propyl salicylate (PrSA), amyl salicylate, benzyl salicylate, and salicin. Among these, MeSA was the most effective to induce stomatal closure, followed by salicin and SA, while ASA was the least effective. Since SA, ASA, and MeSA could modulate plant function, the effects of these three compounds on the levels of reactive oxygen species (ROS) or nitric oxide (NO) in guard cells were studied. MeSA and SA raised the content of ROS or NO in as with ABA. The extent of ROS/NO production in response to ASA was the lowest. Reversal by cPTIO or catalase of stomatal closure by MeSA indicated the essentiality of NO and ROS for stomatal closure. Further studies revealed peroxidase as the ROS source during stomatal closure by MeSA, unlike the dominant role of NADPH oxidase in ROS production induced by ABA. The rise in NO production by ABA or MeSA was dependent on nitrate reductase and NO synthase-like enzyme. Given its most effective nature, MeSA can be an excellent tool to examine the signaling components in guard cells and other plant tissues. The ability of MeSA to induce stomatal closure is physiologically relevant because of its volatile nature, stability, and systemic action.


Asunto(s)
Arabidopsis/efectos de los fármacos , Óxido Nítrico/metabolismo , Estomas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Salicilatos/farmacología , Ácido Abscísico/farmacología , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Ésteres/farmacología , Estomas de Plantas/efectos de los fármacos , Ácido Salicílico/farmacología
14.
J Plant Physiol ; 246-247: 153133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32065920

RESUMEN

Reports on the effect of nitric oxide (NO) or reactive oxygen species (ROS) on photosynthesis and respiration in leaf tissues are intriguing; therefore, the effects of exogenous addition of sodium nitroprusside (SNP, releases NO) or H2O2 on the photosynthetic O2 evolution and respiratory O2 uptake by mesophyll protoplasts in pea (Pisum sativum) were evaluated in the present study. Low concentrations of SNP or H2O2 were used to minimize nonspecific effects. The effects of NO or H2O2 on respiration and photosynthesis were different. The presence of NO decreased the rate of photosynthesis but caused a marginal stimulation of dark respiration. Conversely, externally administered H2O2 drastically decreased the rate of respiration but only slightly decreased photosynthesis. The PS I activity was more sensitive to NO than PS II. On the other hand, 100 µM H2O2 had no effect on the photochemical reactions of either PS I or PS II. The sensitivity of photosynthesis to antimycin A or SHAM (reflecting the interplay between chloroplasts and mitochondria) was not affected by NO. By contrast, H2O2 markedly decreased the sensitivity of photosynthesis to antimycin A and SHAM. It can be concluded that chloroplasts are the primary targets of NO, while mitochondria are the primary targets of ROS in plant cells. We propose that H2O2 can be an important signal to modulate the crosstalk between chloroplasts and mitochondria.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Nitroprusiato/metabolismo , Fotosíntesis , Pisum sativum/fisiología , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/administración & dosificación , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/fisiología , Óxido Nítrico/administración & dosificación , Nitroprusiato/administración & dosificación , Pisum sativum/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Protoplastos/efectos de los fármacos , Protoplastos/fisiología , Especies Reactivas de Oxígeno/administración & dosificación
15.
Protoplasma ; 256(2): 449-457, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30206687

RESUMEN

Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 µE m-2 s-1) or high light (1200 µE m-2 s-1) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.


Asunto(s)
Cloroplastos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Pisum sativum/metabolismo , Hojas de la Planta/metabolismo , Prolina/metabolismo , Ácido Ascórbico/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Oxidación-Reducción , Pisum sativum/genética , Pisum sativum/crecimiento & desarrollo , Prolina Oxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Photosynth Res ; 139(1-3): 67-79, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30187303

RESUMEN

Optimization of photosynthetic performance and protection against abiotic stress are essential to sustain plant growth. Photorespiratory metabolism can help plants to adapt to abiotic stress. The beneficial role of photorespiration under abiotic stress is further strengthened by cyclic electron flow (CEF) and alternative oxidase (AOX) pathways. We have attempted to critically assess the literature on the responses of these three phenomena-photorespiration, CEF and AOX, to different stress situations. We emphasize that photorespiration is the key player to protect photosynthesis and upregulates CEF as well as AOX. Then these three processes work in coordination to protect the plants against photoinhibition and maintain an optimal redox state in the cell, while providing ATP for metabolism and protein repair. H2O2 generated during photorespiratory metabolism seems to be an important signal to upregulate CEF or AOX. Further experiments are necessary to identify the signals originating from CEF or AOX to modulate photorespiration. The mutants deficient in CEF or AOX or both could be useful in this regard. The mutual interactions between CEF and AOX, so as to keep their complementarity, are also to be examined further.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo , Estrés Fisiológico/fisiología
17.
Adv Exp Med Biol ; 1081: 215-232, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30288712

RESUMEN

Drought is one of the abiotic stresses which impairs the plant growth/development and restricts the yield of many crops throughout the world. Stomatal closure is a common adaptation response of plants to the onset of drought condition. Stomata are microscopic pores on the leaf epidermis, which regulate the transpiration/CO2 uptake by leaves. Stomatal guard cells can sense various abiotic and biotic stress stimuli from the internal and external environment and respond quickly to initiate closure under unfavorable conditions. Stomata also limit the entry of pathogens into leaves, restricting their invasion. Drought is accompanied by the production and/or mobilization of the phytohormone, abscisic acid (ABA), which is well-known for its ability to induce stomatal closure. Apart from the ABA, various other factors that accumulate during drought and affect the stomatal function are plant hormones (auxins, MJ, ethylene, brassinosteroids, and cytokinins), microbial elicitors (salicylic acid, harpin, Flg 22, and chitosan), and polyamines . The role of various signaling components/secondary messengers during stomatal opening or closure has been a matter of intense investigation. Reactive oxygen species (ROS) , nitric oxide (NO) , cytosolic pH, and calcium are some of the well-documented signaling components during stomatal closure. The interrelationship and interactions of these signaling components such as ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination.Low temperatures can have deleterious effects on plants. However, plants evolved protection mechanisms to overcome the impact of this stress. Cold temperature inhibits stomatal opening and causes stomatal closure. Cold-acclimated plants often exhibit marked changes in their lipid composition, particularly of the membranes. Cold stress often leads to the accumulation of ABA, besides osmolytes such as glycine betaine and proline. The role of signaling components such as ROS, NO, and Ca2+ during cold acclimation is yet to be established, though the effects of cold stress on plant growth and development are studied extensively. The information on the mitigation processes is quite limited. We have attempted to describe consequences of drought and cold stress in plants, emphasizing stomatal closure. Several of these factors trigger signaling components in roots, shoots, and atmosphere, all leading to stomatal closure. A scheme is presented to show the possible signaling events and their convergence and divergence of action during stomatal closure. The possible directions for future research are discussed.


Asunto(s)
Aclimatación , Frío , Respuesta al Choque por Frío , Sequías , Estomas de Plantas/metabolismo , Plantas/metabolismo , Agua/metabolismo , Ácido Abscísico/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Estado de Hidratación del Organismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/genética , Transducción de Señal
18.
Protoplasma ; 255(1): 153-162, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28699025

RESUMEN

A comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs-putrescine (Put), spermidine (Spd), and spermine (Spm)-induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger). The presence of L-NAME (NOS-like enzyme inhibitor) reversed PA-induced stomatal closure, suggesting that NOS-like enzyme played a significant role in NO production during stomatal closure. The reversal of stomatal closure by diphenylene iodonium (DPI, NADPH oxidase inhibitor) or 2-bromoethylamine (BEA, copper amine oxidase inhibitor) or 1,12 diaminododecane (DADD, polyamine oxidase inhibitor) was partial. In contrast, the presence of DPI along with BEA/DADD reversed completely the closure by PAs. We conclude that both NO and ROS are essential signaling components during Put-, Spd-, and Spm-induced stomatal closure. The PA-induced ROS production is mediated by both NADPH oxidase and amine oxidase. The rise in ROS appears to be upstream of NO. Ours is the first detailed study on the role of NO and its dependence on ROS during stomatal closure by three major PAs.


Asunto(s)
Arabidopsis/química , Óxido Nítrico/metabolismo , Estomas de Plantas/química , Poliaminas/metabolismo , Especies Reactivas de Oxígeno
19.
Methods Mol Biol ; 1670: 253-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28871550

RESUMEN

The electron partitioning between COX and AOX pathways of mitochondria and their coordination is necessary to meet the energy demands as well as to maintain optimized redox status in plants under varying environmental conditions. The relative contribution of these two pathways to total respiration is an important measure during a given stress condition. We describe in detail the procedure that allows the measurement of the parameters of COX and AOX pathway of respiration in mesophyll protoplasts using Clark-type O2 electrode. This chapter also lists the steps for rapid isolation procedure for mesophyll protoplasts from pea leaves. The advantages and limitations of the use of metabolic inhibitors and the protoplasts for measuring the respiration are also briefly discussed.


Asunto(s)
Citocromos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biología Molecular/métodos , Oxidorreductasas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Respiración de la Célula , Clorofila/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Células del Mesófilo/metabolismo , Pisum sativum/crecimiento & desarrollo
20.
Front Plant Sci ; 8: 1096, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680439

RESUMEN

Plants use stomatal closure mediated by elicitors as the first step of the innate immune response to restrict the microbial entry. We present a comprehensive study of the effect of cryptogein and harpin, two elicitors from microbial pathogens of tobacco, on stomatal closure and guard cell signaling components in Arabidopsis thaliana, a model plant. Cryptogein as well as harpin induced stomatal closure, while elevating the levels of reactive oxygen species (ROS) and nitric oxide (NO) in the guard cells of A. thaliana. Kinetic studies with fluorescent dyes revealed that the rise in ROS levels preceded that of NO in guard cells, when treated with these two elicitors. The restriction of NO levels in guard cells, even by ROS modulators indicates the essentiality of ROS for NO production during elicitor-triggered stomatal closure. The signaling events during elicitor-induced stomatal closure appear to converge at NADPH oxidase and ROS production. Our results provide the first report on stomatal closure associated with rise in ROS/NO of guard cells by cryptogein and harpin in A. thaliana. Our results establish that A. thaliana can be used to study stomatal responses to the typical elicitors from microbial pathogens of other plants. The suitability of Arabidopsis opens up an excellent scope for further studies on signaling events leading to stomatal closure by microbial elicitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...