Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genome Res ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37984997

RESUMEN

As part of an ongoing genome sequencing project at the Oregon National Primate Research Center, we identified a rhesus macaque with a rare homozygous frameshift mutation in the gene methyl-CpG binding domain 4, DNA glycosylase (MBD4). MBD4 is responsible for the repair of C > T deamination mutations at CpG dinucleotides and has been linked to somatic hypermutation and cancer predisposition in humans. We show here that MBD4-associated hypermutation also affects the germline: The six offspring of the MBD4-null dam have a fourfold to sixfold increase in de novo mutation burden. This excess burden was predominantly C > T mutations at CpG dinucleotides consistent with MBD4 loss of function in the dam. There was also a significant excess of C > T at CpA sites, indicating an important, unappreciated role for MBD4 to repair deamination in CpA contexts. The MBD4-null dam developed sustained eosinophilia later in life, but we saw no other signs of neoplastic processes associated with MBD4 loss of function in humans nor any obvious disease in the hypermutated offspring. This work provides the first evidence for a genetic factor causing hypermutation in the maternal germline of a mammal and adds to the very small list of naturally occurring variants known to modulate germline mutation rates in mammals.

2.
Nat Biotechnol ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414936

RESUMEN

Characterization of somatic mutations at single-cell resolution is essential to study cancer evolution, clonal mosaicism and cell plasticity. Here, we describe SComatic, an algorithm designed for the detection of somatic mutations in single-cell transcriptomic and ATAC-seq (assay for transposase-accessible chromatin sequence) data sets directly without requiring matched bulk or single-cell DNA sequencing data. SComatic distinguishes somatic mutations from polymorphisms, RNA-editing events and artefacts using filters and statistical tests parameterized on non-neoplastic samples. Using >2.6 million single cells from 688 single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) data sets spanning cancer and non-neoplastic samples, we show that SComatic detects mutations in single cells accurately, even in differentiated cells from polyclonal tissues that are not amenable to mutation detection using existing methods. Validated against matched genome sequencing and scRNA-seq data, SComatic achieves F1 scores between 0.6 and 0.7 across diverse data sets, in comparison to 0.2-0.4 for the second-best performing method. In summary, SComatic permits de novo mutational signature analysis, and the study of clonal heterogeneity and mutational burdens at single-cell resolution.

3.
Nat Commun ; 14(1): 3636, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336879

RESUMEN

DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20-150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely.


Asunto(s)
Neoplasias Colorrectales , Mutación de Línea Germinal , Niño , Femenino , Humanos , Síndrome , Mutación , Neoplasias Colorrectales/genética , Reparación del ADN/genética , Células Germinativas
5.
Andrology ; 11(4): 738-755, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36254403

RESUMEN

BACKGROUND: Analyses of small non-coding RNA (ncRNA) expression in malignant germ cell tumours (GCTs) have focused on microRNAs (miRNAs). As GCTs all arise from primordial germ cells, and piwi-interacting RNAs (piRNAs) have important roles in maintaining germline integrity via transposon silencing, we hypothesised that malignant GCTs are characterised by fundamental piRNA dysregulation. AIMS: We undertook global small ncRNA sequencing in malignant GCTs, in order to describe small ncRNA expression changes for both miRNAs and piRNAs. MATERIALS AND METHODS: We performed small ncRNA next generation sequencing on a representative panel of 47 samples, comprising malignant GCT (n = 31) and control (n = 16) tissues/cell lines. Following quality control and normalisation, filtered count reads were used for differential miRNA and piRNA expression analyses via DESeq2. Predicted mRNA targets for piRNAs were identified and utilised for pathway enrichment analyses. RESULTS: Overall, miRNAs and piRNAs comprised 21.9% and 43.0% of small ncRNA species, respectively. There were 749 differentially expressed miRNAs in malignant GCTs, of which 536 (72%) were over-expressed and 213 (28%) under-expressed. The top-ranking over-expressed miRNAs were exclusively from the miR-371∼373 and miR-302/367 clusters. The most significantly under-expressed miRNAs were miR-100-5p, miR-214-3p, miR-125b-5p and let-7 family members, including miR-202-3p. There were 1,121 differentially expressed piRNAs in malignant GCTs, of which 167 (15%) were over-expressed and 954 (85%) under-expressed. Of note, of the top-20 differentially expressed piRNAs, 16 were over-expressed, of which piR-hsa-2506793 was both top-ranking and most abundant. Mobile element (ME; i.e., transposon)-associated piRNAs comprised 166 (15%) of the 1,121 differentially expressed piRNAs, of which 165 (>99%) were down-regulated. The remaining 955 (85%) non-ME-associated piRNAs may have wider cellular roles. To explore this, predicted mRNA targets of differentially expressed piRNAs identified putative involvement in cancer-associated pathways. CONCLUSION: This study confirms previous miRNA observations, giving credence to our novel demonstration of global piRNA dysregulation in gonadal malignant GCTs, through both ME and non-ME-associated pathways, which likely contributes to GCT pathogenesis.


Asunto(s)
MicroARNs , Neoplasias de Células Germinales y Embrionarias , ARN Pequeño no Traducido , Humanos , ARN de Interacción con Piwi , MicroARNs/genética , Neoplasias de Células Germinales y Embrionarias/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética
6.
Nat Commun ; 13(1): 4272, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953478

RESUMEN

Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Niño , Genómica , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Transcriptoma/genética
7.
Front Aging ; 3: 851039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821807

RESUMEN

The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease's phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.

8.
Nature ; 605(7910): 503-508, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545669

RESUMEN

Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.


Asunto(s)
Enfermedades Genéticas Congénitas , Células Germinativas , Mutación de Línea Germinal , Factores de Edad , Enfermedades Genéticas Congénitas/genética , Mutación de Línea Germinal/genética , Humanos , Masculino , Mutagénesis/genética , Mutación , Padres , Polimorfismo de Nucleótido Simple
10.
Nat Genet ; 53(10): 1434-1442, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34594041

RESUMEN

Mutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life.


Asunto(s)
ADN Polimerasa III/genética , ADN Polimerasa II/genética , Mutación de Línea Germinal/genética , Adolescente , Adulto , Anciano , Desarrollo Embrionario/genética , Genoma Humano/genética , Humanos , Neoplasias Intestinales/patología , Intestinos/patología , Persona de Mediana Edad , Mutagénesis/genética , Filogenia , Células Madre/patología , Adulto Joven
11.
Nature ; 598(7881): 473-478, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646017

RESUMEN

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Asunto(s)
Hepatopatías/genética , Hepatopatías/metabolismo , Hígado/metabolismo , Mutación/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Enfermedad Crónica , Estudios de Cohortes , Ácidos Grasos no Esterificados/metabolismo , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Resistencia a la Insulina , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
12.
Nature ; 597(7876): 381-386, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433962

RESUMEN

Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.


Asunto(s)
Células Germinativas/metabolismo , Mutación de Línea Germinal , Tasa de Mutación , Especificidad de Órganos/genética , Anciano , Células Clonales/metabolismo , Femenino , Salud , Humanos , Masculino , Microdisección , Persona de Mediana Edad , Estrés Oxidativo , Espermatogonias/metabolismo
13.
Nature ; 597(7876): 387-392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433963

RESUMEN

Starting from the zygote, all cells in the human body continuously acquire mutations. Mutations shared between different cells imply a common progenitor and are thus naturally occurring markers for lineage tracing1,2. Here we reconstruct extensive phylogenies of normal tissues from three adult individuals using whole-genome sequencing of 511 laser capture microdissections. Reconstructed embryonic progenitors in the same generation of a phylogeny often contribute to different extents to the adult body. The degree of this asymmetry varies between individuals, with ratios between the two reconstructed daughter cells of the zygote ranging from 60:40 to 93:7. Asymmetries pervade subsequent generations and can differ between tissues in the same individual. The phylogenies resolve the spatial embryonic patterning of tissues, revealing contiguous patches of, on average, 301 crypts in the adult colonic epithelium derived from a most recent embryonic cell and also a spatial effect in brain development. Using data from ten additional men, we investigated the developmental split between soma and germline, with results suggesting an extraembryonic contribution to primordial germ cells. This research demonstrates that, despite reaching the same ultimate tissue patterns, early bottlenecks and lineage commitments lead to substantial variation in embryonic patterns both within and between individuals.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Encéfalo/metabolismo , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Mutación de Línea Germinal/genética , Humanos , Masculino , Mosaicismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética
14.
Nature ; 593(7859): 405-410, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911282

RESUMEN

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Asunto(s)
Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN/métodos , Músculo Liso/metabolismo , Mutación , Neuronas/metabolismo , Imagen Individual de Molécula/métodos , Células Madre/metabolismo , Enfermedad de Alzheimer/genética , Células Sanguíneas/citología , División Celular , Estudios de Cohortes , Colon/citología , Epitelio/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso/citología , Mutagénesis , Tasa de Mutación , Neuronas/citología , Células Madre/citología
15.
Nature ; 592(7852): 80-85, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692543

RESUMEN

Placentas can exhibit chromosomal aberrations that are absent from the fetus1. The basis of this genetic segregation, which is known as confined placental mosaicism, remains unknown. Here we investigated the phylogeny of human placental cells as reconstructed from somatic mutations, using whole-genome sequencing of 86 bulk placental samples (with a median weight of 28 mg) and of 106 microdissections of placental tissue. We found that every bulk placental sample represents a clonal expansion that is genetically distinct, and exhibits a genomic landscape akin to that of childhood cancer in terms of mutation burden and mutational imprints. To our knowledge, unlike any other healthy human tissue studied so far, the placental genomes often contained changes in copy number. We reconstructed phylogenetic relationships between tissues from the same pregnancy, which revealed that developmental bottlenecks genetically isolate placental tissues by separating trophectodermal lineages from lineages derived from the inner cell mass. Notably, there were some cases with full segregation-within a few cell divisions of the zygote-of placental lineages and lineages derived from the inner cell mass. Such early embryonic bottlenecks may enable the normalization of zygotic aneuploidy. We observed direct evidence for this in a case of mosaic trisomic rescue. Our findings reveal extensive mutagenesis in placental tissues and suggest that mosaicism is a typical feature of placental development.


Asunto(s)
Mosaicismo , Mutagénesis , Mutación , Placenta/metabolismo , Biopsia , Masa Celular Interna del Blastocisto/citología , Femenino , Genoma Humano/genética , Humanos , Mesodermo/citología , Tasa de Mutación , Placenta/citología , Embarazo , Trisomía/genética , Trofoblastos/citología , Trofoblastos/metabolismo , Cigoto/citología
16.
Biol Rev Camb Philos Soc ; 96(3): 822-841, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33615674

RESUMEN

The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.


Asunto(s)
Células Germinativas , Meiosis , Evolución Biológica , Genoma , Meiosis/genética , Mutación
17.
Nat Commun ; 12(1): 1119, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602930

RESUMEN

Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Reguladores/inmunología , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual , Células TH1/inmunología , Transcriptoma/genética
18.
Nature ; 580(7805): 640-646, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350471

RESUMEN

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Asunto(s)
Análisis Mutacional de ADN , Endometrio/citología , Endometrio/metabolismo , Epitelio/metabolismo , Salud , Mutación , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Carcinogénesis/genética , Células Clonales/citología , Neoplasias Endometriales/genética , Endometrio/patología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Paridad/genética , Factores de Tiempo , Adulto Joven
19.
Nat Commun ; 10(1): 4053, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492841

RESUMEN

Whole genome sequencing (WGS) studies have estimated the human germline mutation rate per basepair per generation (~1.2 × 10-8) to be higher than in mice (3.5-5.4 × 10-9). In humans, most germline mutations are paternal in origin and numbers of mutations per offspring increase with paternal and maternal age. Here we estimate germline mutation rates and spectra in six multi-sibling mouse pedigrees and compare to three multi-sibling human pedigrees. In both species we observe a paternal mutation bias, a parental age effect, and a highly mutagenic first cell division contributing to the embryo. We also observe differences between species in mutation spectra, in mutation rates per cell division, and in the parental bias of mutations in early embryogenesis. These differences between species likely result from both species-specific differences in cellular genealogies of the germline, as well as biological differences within the same stage of embryogenesis or gametogenesis.


Asunto(s)
Células Germinativas/metabolismo , Mutación de Línea Germinal , Tasa de Mutación , Secuenciación Completa del Genoma/métodos , Animales , División Celular/genética , Desarrollo Embrionario/genética , Femenino , Gametogénesis/genética , Células Germinativas/citología , Humanos , Masculino , Edad Materna , Ratones , Edad Paterna , Linaje , Especificidad de la Especie
20.
Genome Res ; 27(10): 1704-1714, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28855261

RESUMEN

Structural mosaic abnormalities are large post-zygotic mutations present in a subset of cells and have been implicated in developmental disorders and cancer. Such mutations have been conventionally assessed in clinical diagnostics using cytogenetic or microarray testing. Modern disease studies rely heavily on exome sequencing, yet an adequate method for the detection of structural mosaicism using targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to detect structural mosaic abnormalities using deviations in allele fraction and read coverage from next-generation sequencing data. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) simulations were used to calculate detection performance across a range of mosaic event sizes, types, clonalities, and sequencing depths. The tool was applied to 4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected. For eight of these 11 events, mosaicism was observed in saliva but not blood, suggesting that assaying blood alone would miss a large fraction, possibly >50%, of mosaic diagnostic chromosomal rearrangements.


Asunto(s)
Exoma , Genoma Humano , Mosaicismo , Análisis de Secuencia de ADN/métodos , Femenino , Humanos , Masculino , Análisis de Secuencia de ADN/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...