Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(57): 120266-120283, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938486

RESUMEN

The Sistan region in Southeastern Iran is one of the world's most sensitive areas when it comes to sandstorms and wind erosion. One of the most influential factors in interpreting sandstorms is sand drift potential (DP), which is directly related to wind speed. Accurately, monitoring this phenomenon is still being determined, considering various temporal scales. Therefore, the main aim of this research is to analyze the trend of DP on monthly and annual scales. Our results showed that monthly variations of DP reached the highest and lowest values in July (609 VU) and January (47 VU), respectively. Blowing sand predominantly moved southeast, and the directional index fluctuated from 0.88 to 0.94. The annual DP was measured equal to 2700 VU, signifying a relatively high value when compared to other arid regions worldwide. The trend analysis results obtained from the Mann-Kendall test revealed both positive trends during the period 1987-2001 and negative ones from 2002 to 2016). However, the positive trend was found statistically insignificant. Furthermore, Sen's slope test results demonstrated that a negative trend could be observed with a steeper slope during July, September, and August, while a positive trend could be observed with a steeper pitch during November, December, and June. We recommend that land managers and stakeholders involved in controlling blowing sand using biological and physical methods should consider these trends in the Sistan region. Implementing nature-based solutions or control strategies should focus on these temporal sequences.


Asunto(s)
Monitoreo del Ambiente , Arena , Monitoreo del Ambiente/métodos , Irán , Viento , Minerales
2.
Environ Res ; 197: 111087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798514

RESUMEN

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication's CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper.


Asunto(s)
Bibliometría , Erosión del Suelo , Agricultura , Publicaciones , Suelo
3.
Sci Total Environ ; 780: 146494, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773346

RESUMEN

To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.

4.
Environ Monit Assess ; 190(6): 356, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29796940

RESUMEN

The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R2 = 0.94) than fall and spring (R2 = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.


Asunto(s)
Desarrollo Económico , Monitoreo del Ambiente , Agua Dulce , Estaciones del Año , Suelo , Agua , Humedales , Clima , Conservación de los Recursos Hídricos , Sequías , Ambiente , Monitoreo del Ambiente/métodos , Inundaciones , Pradera , Humanos , Irán , Poaceae/crecimiento & desarrollo , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...