Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 6: 8613, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26456460

RESUMEN

FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae--Erg26p, Homo sapiens--NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Antifúngicos/química , Colesterol/análogos & derivados , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/genética , 3-Hidroxiesteroide Deshidrogenasas/genética , Candida albicans , Colesterol/química , Farmacorresistencia Fúngica/genética , Ergosterol/biosíntesis , Mutación , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Metab ; 21(2): 286-298, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25651181

RESUMEN

Mice deficient in the nuclear hormone receptor RORγt have defective development of thymocytes, lymphoid organs, Th17 cells, and type 3 innate lymphoid cells. RORγt binds to oxysterols derived from cholesterol catabolism, but it is not clear whether these are its natural ligands. Here, we show that sterol lipids are necessary and sufficient to drive RORγt-dependent transcription. We combined overexpression, RNAi, and genetic deletion of metabolic enzymes to study RORγ-dependent transcription. Our results are consistent with the RORγt ligand(s) being a cholesterol biosynthetic intermediate (CBI) downstream of lanosterol and upstream of zymosterol. Analysis of lipids bound to RORγ identified molecules with molecular weights consistent with CBIs. Furthermore, CBIs stabilized the RORγ ligand-binding domain and induced coactivator recruitment. Genetic deletion of metabolic enzymes upstream of the RORγt-ligand(s) affected the development of lymph nodes and Th17 cells. Our data suggest that CBIs play a role in lymphocyte development potentially through regulation of RORγt.


Asunto(s)
Linfocitos/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Esteroles/metabolismo , Animales , Línea Celular , Colesterol/biosíntesis , Drosophila melanogaster/citología , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Esterol 14-Desmetilasa/deficiencia , Esterol 14-Desmetilasa/metabolismo , Esteroles/química , Células Th17
3.
Biochem J ; 459(2): 289-99, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24483781

RESUMEN

The enzyme CPI (cyclopropylsterol-cycloisomerase) from the plant sterol pathway catalyses the cleavage of the 9ß,19-cyclopropane ring of the 4α-methyl-cyclopropylsterol cycloeucalenol to produce the Δ8-sterol obtusifoliol. Randomly mutated plasmids carrying the Arabidopsis thaliana cpi gene were screened for inactive CPI mutant enzymes on the basis of their ability to genetically complement a Saccharomyces cerevisiae erg7 (defective in oxidosqualene cyclase) ergosterol auxotroph grown in the presence of exogenous cycloeucalenol, and led to the identification of four catalytically important residues. Site-directed mutagenesis experiments confirmed the role of the identified residues, and demonstrated the importance of selected acidic residues and a conserved G108NYFWTHYFF117 motif. The mutated isomerases were assayed both in vivo by quantification of cycloeucalenol conversion into ergosterol in erg7 cells, and in vitro by examination of activities of recombinant AtCPI (A. thaliana CPI) mutants. These studies show that Gly28, Glu29, Gly108 and Asp260 are crucial for CPI activity and that an hydroxy function at residue 113 is needed for maximal substrate affinity and CPI activity. CPI is inactive on upstream 4α,ß-dimethyl-cyclopropylsterol precursors of phytosterols. The single mutation W112L generates a CPI with an extended substrate specificity, that is able to convert 4α,ß-dimethyl-cyclopropylsterols into the corresponding Δ8 products. These findings provide insights into the molecular basis of CPI activity and substrate specificity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Liasas Intramoleculares/metabolismo , Isomerasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , ADN Complementario , Epítopos , Regulación de la Expresión Génica de las Plantas/fisiología , Liasas Intramoleculares/genética , Isomerasas/genética , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación , Esteroides/química , Especificidad por Sustrato , Levaduras/metabolismo
4.
Plant Cell ; 25(12): 4879-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24326590

RESUMEN

Sterols are vital for cellular functions and eukaryotic development because of their essential role as membrane constituents. Sterol biosynthetic intermediates (SBIs) represent a potential reservoir of signaling molecules in mammals and fungi, but little is known about their functions in plants. SBIs are derived from the sterol C4-demethylation enzyme complex that is tethered to the membrane by Ergosterol biosynthetic protein28 (ERG28). Here, using nonlethal loss-of-function strategies focused on Arabidopsis thaliana ERG28, we found that the previously undetected SBI 4-carboxy-4-methyl-24-methylenecycloartanol (CMMC) inhibits polar auxin transport (PAT), a key mechanism by which the phytohormone auxin regulates several aspects of plant growth, including development and responses to environmental factors. The induced accumulation of CMMC in Arabidopsis erg28 plants was associated with diagnostic hallmarks of altered PAT, including the differentiation of pin-like inflorescence, loss of apical dominance, leaf fusion, and reduced root growth. PAT inhibition by CMMC occurs in a brassinosteroid-independent manner. The data presented show that ERG28 is required for PAT in plants. Furthermore, it is accumulation of an atypical SBI that may act to negatively regulate PAT in plants. Hence, the sterol pathway offers further prospects for mining new target molecules that could regulate plant development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/fisiología , Fitosteroles/biosíntesis , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Vías Biosintéticas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fitosteroles/metabolismo
5.
Plant Cell ; 23(5): 1985-2005, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21558543

RESUMEN

The most abundant posttranslational modification in nature is the attachment of preassembled high-mannose-type glycans, which determines the fate and localization of the modified protein and modulates the biological functions of glycosylphosphatidylinositol-anchored and N-glycosylated proteins. In eukaryotes, all mannose residues attached to glycoproteins from the luminal side of the endoplasmic reticulum (ER) derive from the polyprenyl monosaccharide carrier, dolichol P-mannose (Dol-P-Man), which is flipped across the ER membrane to the lumen. We show that in plants, Dol-P-Man is synthesized when Dol-P-Man synthase1 (DPMS1), the catalytic core, interacts with two binding proteins, DPMS2 and DPMS3, that may serve as membrane anchors for DPMS1 or provide catalytic assistance. This configuration is reminiscent of that observed in mammals but is distinct from the single DPMS protein catalyzing Dol-P-Man biosynthesis in bakers' yeast and protozoan parasites. Overexpression of DPMS1 in Arabidopsis thaliana results in disorganized stem morphology and vascular bundle arrangements, wrinkled seed coat, and constitutive ER stress response. Loss-of-function mutations and RNA interference-mediated reduction of DPMS1 expression in Arabidopsis also caused a wrinkled seed coat phenotype and most remarkably enhanced hypersensitivity to ammonium that was manifested by extensive chlorosis and a strong reduction of root growth. Collectively, these data reveal a previously unsuspected role of the prenyl-linked carrier pathway for plant development and physiology that may help integrate several aspects of candidate susceptibility genes to ammonium stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Monofosfato de Dolicol Manosa/metabolismo , Manosiltransferasas/metabolismo , Polisacáridos/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Retículo Endoplásmico/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicosilación , Manosiltransferasas/genética , Mutagénesis Insercional , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico
6.
Steroids ; 76(4): 340-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21147141

RESUMEN

Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3ß-hydroxysteroid-dehydrogenase/C4-decarboxylase (3ßHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3ßHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Fitosteroles/metabolismo , Plantas/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Arabidopsis/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos , Metilación , Estructura Molecular , Complejos Multienzimáticos/genética , Plantas/enzimología , Plantas/genética , Conformación Proteica , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
7.
Plant Physiol ; 153(3): 970-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20460582

RESUMEN

The later steps of carotenoid biosynthesis involve the formation of cyclic carotenoids. The reaction is catalyzed by lycopene beta-cyclase (LCY-B), which converts lycopene into beta-carotene, and by capsanthin-capsorubin synthase (CCS), which is mainly dedicated to the synthesis of kappa-cyclic carotenoids (capsanthin and capsorubin) but also has LCY-B activity. Although the peptide sequences of plant LCY-Bs and CCS contain a putative dinucleotide-binding motif, it is believed that these two carotenoid cyclases proceed via protic activation and stabilization of resulting carbocation intermediates. Using pepper (Capsicum annuum) CCS as a prototypic carotenoid cyclase, we show that the monomeric protein contains one noncovalently bound flavin adenine dinucleotide (FAD) that is essential for enzyme activity only in the presence of NADPH, which functions as the FAD reductant. The reaction proceeds without transfer of hydrogen from the dinucleotide cofactors to beta-carotene or capsanthin. Using site-directed mutagenesis, amino acids potentially involved in the protic activation were identified. Substitutions of alanine, lysine, and arginine for glutamate-295 in the conserved 293-FLEET-297 motif of pepper CCS or LCY-B abolish the formation of beta-carotene and kappa-cyclic carotenoids. We also found that mutations of the equivalent glutamate-196 located in the 194-LIEDT-198 domain of structurally divergent bacterial LCY-B abolish the formation of beta-carotene. The data herein reveal plant carotenoid cyclases to be novel enzymes that combine characteristics of non-metal-assisted terpene cyclases with those attributes typically found in flavoenzymes that catalyze reactions, with no net redox, such as type 2 isopentenyl diphosphate isomerase. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate.


Asunto(s)
Capsicum/enzimología , Flavoproteínas/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biocatálisis , Carotenoides/biosíntesis , Carotenoides/química , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Flavina-Adenina Dinucleótido/metabolismo , Liasas Intramoleculares/química , Liasas Intramoleculares/metabolismo , Cinética , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Proteínas de Plantas/química
8.
Plant Physiol ; 150(3): 1556-66, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19420326

RESUMEN

In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.


Asunto(s)
Ácido Abscísico/fisiología , Nicotiana/efectos de los fármacos , Piridonas/farmacología , Sesquiterpenos/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Ácido Araquidónico/farmacología , Botrytis , Celulasa/farmacología , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología
9.
Plant Physiol ; 149(4): 1872-86, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19218365

RESUMEN

Sterols become functional only after removal of the two methyl groups at C4 by a membrane-bound multienzyme complex including a 3beta-hydroxysteroid-dehydrogenase/C4-decarboxylase (3betaHSD/D). We recently identified Arabidopsis (Arabidopsis thaliana) 3betaHSD/D as a bifunctional short-chain dehydrogenase/reductase protein. We made use of three-dimensional homology modeling to identify key amino acids involved in 4alpha-carboxy-sterol and NAD binding and catalysis. Key amino acids were subjected to site-directed mutagenesis, and the mutated enzymes were expressed and assayed both in vivo and in vitro in an erg26 yeast strain defective in 3betaHSD/D. We show that tyrosine-159 and lysine-163, which are oriented near the 3beta-hydroxyl group of the substrate in the model, are essential for the 3betaHSD/D activity, consistent with their involvement in the initial dehydrogenation step of the reaction. The essential arginine-326 residue is predicted to form a salt bridge with the 4alpha-carboxyl group of the substrate, suggesting its involvement both in substrate binding and in the decarboxylation step. The essential aspartic acid-39 residue is in close contact with the hydroxyl groups of the adenosine-ribose ring of NAD+, in good agreement with the strong preference of 3betaHSD/D for NAD+. Data obtained with serine-133 mutants suggest close proximity between the serine-133 residue and the C4beta domain of the bound sterol. Based on these data, we propose a tentative mechanism for 3betaHSD/D activity. This study provides, to our knowledge, the first data on the three-dimensional molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthesis pathway with its substrate. The implications of our findings for studying the roles of C4-alkylated sterol precursors in plant development are discussed.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/química , Aminoácidos/metabolismo , Arabidopsis/enzimología , Carboxiliasas/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Homología Estructural de Proteína , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Biocatálisis , Carboxiliasas/metabolismo , Dominio Catalítico , Cinética , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fitosteroles/química , Estructura Secundaria de Proteína , Alineación de Secuencia , Eliminación de Secuencia , Especificidad por Sustrato
10.
Biochem J ; 414(2): 247-59, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18459942

RESUMEN

A putative 8,7SI (sterol 8,7-isomerase) from Zea mays, termed Zm8,7SI, has been isolated from an EST (expressed sequence tag) library and subcloned into the yeast erg2 mutant lacking 8,7SI activity. Zm8,7SI restored endogenous ergosterol synthesis. An in vitro enzymatic assay in the corresponding yeast microsomal extract indicated that the preferred Delta(8)-sterol substrate possesses a single C4alpha methyl group, in contrast with 8,7SIs from animals and fungi, thus reflecting the diversity in the structure of their active site in relation to the distinct sterol biosynthetic pathways. In accordance with the proposed catalytic mechanism, a series of lipophilic ammonium-ion-containing derivatives possessing a variety of structures and biological properties, potently inhibited the Zm8,7SI in vitro. To evaluate the importance of a series of conserved acidic and tryptophan residues which could be involved in the Zm8,7SI catalytic mechanism, 20 mutants of Zm8,7SI were constructed as well as a number of corresponding mutants of the Saccharomyces cerevisiae 8,7SI. The mutated isomerases were assayed in vivo by sterol analysis and quantification of Delta(5,7)-sterols and directly in vitro by examination of the activities of the recombinant Zm8,7SI mutants. These studies have identified His(74), Glu(78), Asp(107), Glu(121), Trp(66) and Trp(193) that are required for Zm8,7SI activity and show that binding of the enzyme-substrate complex is impaired in the mutant T124I. They underline the functional homology between the plant and animal 8,7SIs on one hand, in contrast with the yeast 8,7SI on the other hand, in accordance with their molecular diversity and distinct mechanisms.


Asunto(s)
Hongos/enzimología , Proteínas de Plantas/metabolismo , Esteroide Isomerasas/metabolismo , Zea mays/enzimología , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Western Blotting , Hongos/genética , Cromatografía de Gases y Espectrometría de Masas , Variación Genética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Esteroide Isomerasas/química , Esteroide Isomerasas/genética , Esteroles/química , Esteroles/metabolismo , Especificidad por Sustrato , Temperatura de Transición , Zea mays/genética
11.
J Biol Chem ; 281(37): 27264-77, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16835224

RESUMEN

We have isolated two cDNAs from Arabidopsis thaliana encoding bifunctional 3beta-hydroxysteroid dehydrogenase/C-4 decarboxylases (3betaHSD/D) involved in sterol synthesis, termed At3betaHSD/D1 and At3betaHSD/D2. Transformation of the yeast ergosterol auxotroph erg26 mutant, which lacks 3betaHSD/D activity, with the At3betaHSD/D1 isoform or with At3betaHSD/D2 isoform containing a C-terminal At3betaHSD/D1 endoplasmic reticulum-retrieval sequence restored growth and ergosterol synthesis in erg26. An in vitro enzymatic assay revealed high 3betaHSD/D activity for both isoenzymes in the corresponding microsomal extracts. The two At3betaHSD/D isoenzymes showed similar substrate specificities that required free 3beta-hydroxyl and C-4-carboxyl groups but were quite tolerant in terms of variations of the sterol nucleus and side chain structures. Data obtained with 4alpha-carboxy-cholest-7-en-3beta-ol and its 3alpha-deuterated analog revealed that 3alpha-hydrogen-carbon bond cleavage is not the rate-limiting step of the reaction. In planta reduction on the expression of the 3betaHSD/D gene as a consequence of VIGS-mediated gene silencing in Nicotiana benthamiana led to a substantial accumulation of 3beta-hydroxy-4beta,14-dimethyl-5alpha-ergosta-9beta,19-cyclo-24(24(1))-en-4alpha-carboxylic acid, consistent with a decrease in 3betaHSD/D activity. These two novel oxidative decarboxylases constitute the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/química , Arabidopsis/enzimología , Carboxiliasas/química , Carbono/química , Catálisis , Clonación Molecular , ADN Complementario/metabolismo , Retículo Endoplásmico/metabolismo , Silenciador del Gen , Modelos Químicos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Esteroles/química , Nicotiana/enzimología
12.
Prog Lipid Res ; 44(6): 357-429, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16289312

RESUMEN

Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.


Asunto(s)
Plantas/metabolismo , Monosacáridos de Poliisoprenil Fosfato/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Plastidios/metabolismo , Monosacáridos de Poliisoprenil Fosfato/clasificación , Transducción de Señal/fisiología
13.
Plant Physiol ; 139(2): 734-49, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16169959

RESUMEN

The sterol 14alpha-demethylase (CYP51) is the most widely distributed cytochrome P450 gene family being found in all biological kingdoms. It catalyzes the first step following cyclization in sterol biosynthesis, leading to the formation of precursors of steroid hormones, including brassinosteroids, in plants. Most enzymes involved in the plant sterol biosynthesis pathway have been characterized biochemically and the corresponding genes cloned. Genes coding for enzymes promoting substrate modifications before 24-methylenelophenol lead to embryonic and seed defects when mutated, while mutants downstream the 24-methylenelophenol intermediate show phenotypes characteristic of brassinosteroid mutants. By a differential display approach, we have isolated a fertilization-induced gene, encoding a sterol 14alpha-demethylase enzyme, named CYP51G1-Sc. Functional characterization of CYP51G1-Sc expressed in yeast (Saccharomyces cerevisiae) showed that it could demethylate obtusifoliol, as well as nontypical plant sterol biosynthetic intermediates (lanosterol), in contrast with the strong substrate specificity of the previously characterized obtusifoliol 14alpha-demethylases found in other plant species. CYP51G1-Sc transcripts are mostly expressed in meristems and in female reproductive tissues, where they are induced following pollination. Treatment of the plant itself with obtusifoliol induced the expression of the CYP51G1-Sc mRNA, suggesting a possible role of this transient biosynthetic intermediate as a bioactive signaling lipid molecule. Furthermore, treatments of leaves with (14)C-labeled obtusifoliol demonstrated that this sterol could be transported in distal parts of the plant away from the sprayed leaves. Arabidopsis (Arabidopsis thaliana) CYP51 homozygous knockout mutants were also lethal, suggesting important roles for this enzymatic step and its substrate in plant development.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Genes de Plantas , Oxidorreductasas/genética , Solanum/enzimología , Solanum/genética , Secuencia de Bases , Colestadienoles/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , ADN de Plantas/genética , Fertilización , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Prueba de Complementación Genética , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Mutación , Oxidorreductasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transducción de Señal , Solanum/fisiología , Esterol 14-Desmetilasa , Especificidad por Sustrato
14.
Biochem J ; 378(Pt 3): 889-98, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14653780

RESUMEN

In plants, the conversion of cycloartenol into functional phytosterols requires the removal of the two methyl groups at C-4 by an enzymic complex including a sterol 4alpha-methyl oxidase (SMO). We report the cloning of candidate genes for SMOs in Arabidopsis thaliana, belonging to two distinct families termed SMO1 and SMO2 and containing three and two isoforms respectively. SMO1 and SMO2 shared low sequence identity with each other and were orthologous to the ERG25 gene from Saccharomyces cerevisiae which encodes the SMO. The plant SMO amino acid sequences possess all the three histidine-rich motifs (HX3H, HX2HH and HX2HH), characteristic of the small family of membrane-bound non-haem iron oxygenases that are involved in lipid oxidation. To elucidate the precise functions of SMO1 and SMO2 gene families, we have reduced their expression by using a VIGS (virus-induced gene silencing) approach in Nicotiana benthamiana. SMO1 and SMO2 cDNA fragments were inserted into a viral vector and N. benthamiana inoculated with the viral transcripts. After silencing with SMO1, a substantial accumulation of 4,4-dimethyl-9beta,19-cyclopropylsterols (i.e. 24-methylenecycloartanol) was obtained, whereas qualitative and quantitative levels of 4alpha-methylsterols were not affected. In the case of silencing with SMO2, a large accumulation of 4alpha-methyl-Delta7-sterols (i.e. 24-ethylidenelophenol and 24-ethyllophenol) was found, with no change in the levels of 4,4-dimethylsterols. These clear and distinct biochemical phenotypes demonstrate that, in contrast with animals and fungi, in photosynthetic eukaryotes, these two novel families of cDNAs are coding two distinct types of C-4-methylsterol oxidases controlling the level of 4,4-dimethylsterol and 4alpha-methylsterol precursors respectively.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Plantas/enzimología , Esteroles/biosíntesis , Arabidopsis/enzimología , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Prueba de Complementación Genética , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Oxigenasas de Función Mixta/clasificación , Oxigenasas de Función Mixta/genética , Modelos Químicos , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/enzimología , Nicotiana/genética
15.
Biochim Biophys Acta ; 1633(2): 106-17, 2003 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12880870

RESUMEN

Despite genes of the sterol methyl-oxidase component (SMO) of the sterol-C4-demethylation multienzymatic complex have been identified in a variety of organisms and the key role played by SMO in yeast sterol biosynthesis, the enzymological properties of yeast SMO have not been investigated. An enzymatic assay for measuring specifically sterol 4alpha-methyl-oxidase activity in Saccharomyces cerevisiae has been developed for the first time by using [14C]-4,4-dimethyl-zymosterol as substrate. It allowed enzymatically formed C4 mono- and di-demethylated products to be characterized as well as two novel C4-hydroxymethyl-zymosterol derivatives to be identified as immediate oxidative metabolites by the yeast 4,4-dimethyl-zymosterol 4alpha-methyl-oxidase (ScSMO). The properties of microsomal ScSMO have been established with respect to cofactor requirements and kinetics and the substrate selectivity examined with a number of 4,4-dimethyl- and 4alpha-methyl-sterols. Remarkably, ScSMO showed very low activity with 24-methylene-24-dihydrocycloartenol, the natural substrate of maize 4,4-dimethyl-sterol-C4-methyl-oxidase. Conversely, maize sterol-C4-methyl-oxidases showed extremely reduced activity with the natural substrate of ScSMO. The previously described antifungal agent, 6-amino-2-n-pentylbenzothiazole was shown to directly inhibit the microsomal ScSMO activity in vitro. The yeast system was more than 500 times more sensitive to this derivative than the maize systems. These distinct substrate specificities and inhibitor sensitivities between yeast and plant sterol-4alpha-methyl-oxidases probably reflect diversity in the structure of their active sites in relation to the distinct sterol biosynthetic pathways.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/biosíntesis , Antifúngicos/farmacología , Radioisótopos de Carbono , Colestadienoles/química , Colestadienoles/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Cinética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/química , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Tiazoles/farmacología , Zea mays/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...