Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Oleo Sci ; 72(9): 811-818, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37574285

RESUMEN

This study highlights the use of red palm oil (RPO) as an alternative to dairy fat in a hard ice cream sample in the presence of different stabilizers; maltodextrin (MALTOD) and modified starch (MSTARCH). No stabilizer was added in the control sample (CO), while the different ratios of RPO to each stabilizer were 4:1, 3:2, and 2:3, coded as MALTOD1, MALTOD2, MALTOD3 for maltodextrin, and MSTARCH1, MSTARCH2, and MSTARCH3 for modified starch, respectively. These samples were compared regarding overrun, physical, and sensory properties. For MALTOD, sample MALTOD3 had the highest overrun (49.31±13.78%), while MALTOD2 had the highest viscosity (7.90±0.03 Pa.s) and hardness (1.09±0.07 kg), and MALTOD1 had the lowest melting properties (61.10±0.20%). For MSTARCH, sample MSTARCH1 had the highest hardness (3.39±0.07 kg), MSTARCH2 had the highest overrun (67.64±2.27%), and MSTARCH3 had the highest viscosity (8.19±0.24 Pa.s) and the lowest melting properties (39.83±0.20%). Samples MALTOD3 and MSTARCH1 were selected for comparison with commercial samples in terms of sensory acceptance and preference. There was no significant difference (p > 0.05) between the sensory acceptability of MALTOD3 and MSTARCH1. However, both samples received a significantly lower (p < 0.05) ranking than the commercial samples in terms of appearance, texture, flavour, meltability, and overall acceptance. Future studies are recommended to improve the RPO-based ice cream sample, particularly in terms of its sensory properties.


Asunto(s)
Helados , Almidón , Aceite de Palma , Polisacáridos
2.
Food Sci Biotechnol ; 27(2): 479-488, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30263772

RESUMEN

In this study, a selected γ-aminobutyric acid (GABA)-rich Malaysian strain Aspergillus oryzae NSK was collected from soy sauce koji. The strain was used to explore the effect of using renewable native sugar syrup, sugarcane, nipa, and molasses as fermentable substrates for developing a novel functional GABA soy sauce. We evaluated the strain using the chosen native sugars for 7 days using shake flask fermentation at 30 °C. The results showed optimum GABA concentration was achieved using cane molasses as the fermentable substrate (354.08 mg/L), followed by sugarcane syrup (320.7 mg/L) and nipa syrup (232.07 mg/L). Cane molasses was subsequently utilized as a substrate to determine the most suitable concentration for A. oryzae NSK to enhance GABA production and was determined as 50% g/L of glucose standard cane molasses. Our findings indicate that cane molasses can be used as a GABA-rich ingredient to develop a new starter culture for A. oryzae NSK soy sauce production.

3.
Bioprocess Biosyst Eng ; 40(12): 1753-1761, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28879627

RESUMEN

This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.


Asunto(s)
Aspergillus/metabolismo , Fricción , Sonicación , Viscosidad , Alginatos/química , Benzoatos/metabolismo , Benzofuranos/metabolismo , Biomasa , Reactores Biológicos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Lovastatina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA