Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 5(2): lqad037, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37101659

RESUMEN

The coronavirus disease 19 (COVID-19) is a highly pathogenic viral infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in the global pandemic of 2020. A lack of therapeutic and preventive strategies has quickly posed significant threats to world health. A comprehensive understanding of SARS-CoV-2 evolution and natural selection, how it impacts host interaction, and phenotype symptoms is vital to develop effective strategies against the virus. The SARS2Mutant database (http://sars2mutant.com/) was developed to provide valuable insights based on millions of high-quality, high-coverage SARS-CoV-2 complete protein sequences. Users of this database have the ability to search for information on three amino acid substitution mutation strategies based on gene name, geographical zone, or comparative analysis. Each strategy is presented in five distinct formats which includes: (i) mutated sample frequencies, (ii) heat maps of mutated amino acid positions, (iii) mutation survivals, (iv) natural selections and (v) details of substituted amino acids, including their names, positions, and frequencies. GISAID is a primary database of genomics sequencies of influenza viruses updated daily. SARS2Mutant is a secondary database developed to discover mutation and conserved regions from the primary data to assist with design for targeted vaccine, primer, and drug discoveries.

2.
J Transl Med ; 21(1): 152, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841805

RESUMEN

BACKGROUND: At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS: 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS: Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION: Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteómica , Mutación , Tasa de Mutación
3.
Virus Res ; 323: 199016, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473671

RESUMEN

OBJECTIVE: Rapid transmission and reproduction of RNA viruses prepare conducive conditions to have a high rate of mutations in their genetic sequence. The viral mutations make adapt the severe acute respiratory syndrome coronavirus 2 in the host environment and help the evolution of the virus then also caused a high mortality rate by the virus that threatens worldwide health. Mutations and adaptation help the virus to escape confrontations that are done against it. METHODS: In the present study, we analyzed 6,510,947 sequences of non-structural protein 1 as one of the conserved regions of the virus to find out frequent mutations and substitute amino acids in comparison with the wild type. NSP1 mutations rate divided into continents were different. RESULTS: Based on this continental categorization, E87D in global vision and also in Europe notably increased. The E87D mutation has signed up to January 2022 as the first frequent mutation observed. The remarkable mutations, H110Y and R24C have the second and third frequencies, respectively. CONCLUSION: According to the important role of non-structural protein 1 on the host mRNA translation, developing drug design against the protein could be so hopeful to find more effective ways the control and then treatment of the global pandemic coronavirus disease 2019.

4.
Iran J Basic Med Sci ; 25(11): 1299-1307, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36474565

RESUMEN

Objectives: To address a highly mutable pathogen, mutations must be evaluated. SARS-CoV-2 involves changing infectivity, mortality, and treatment and vaccination susceptibility resulting from mutations. Materials and Methods: We investigated the Asian and worldwide samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the announcement of the new coronavirus 2019 (COVID-19) up to January 2022. Sequence alignment to the Wuhan-2019 virus permits tracking mutations in Asian and global samples. Furthermore, we explored the evolutionary tendencies of structural protein mutations and compared the results between Asia and the globe. Results: The mutation analyses indicated that 5.81%, 70.63%, 26.59%, and 3.36% of Asian S, E, M, and N samples did not display any mutation. Additionally, the most relative mutations among the S, E, M, and N AASs occurred in the regions of 508 to 635 AA, 7 to 14 AA, 66 to 88 AA, and 164 to 205 AA in both Asian and total samples. D614G, T9I, I82T, and R203M were inferred as the most frequent mutations in S, E, M, and N AASs. Timeline research showed that substitution mutation in the location of 614 among Asian and total S AASs was detected from January 2020. Conclusion: N protein was the most non-conserved protein, and the most prevalent mutations in S, E, M, and N AASs were D614G, T9I, I82T, and R203M. Screening structural protein mutations is a robust approach for developing drugs, vaccines, and more specific diagnostic tools.

5.
Virol J ; 19(1): 220, 2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36528612

RESUMEN

BACKGROUND: Emergence of new variants mainly variants of concerns (VOC) is caused by mutations in main structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, we aimed to investigate the mutations among structural proteins of SARS-CoV-2 globally. METHODS: We analyzed samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the declaration of the coronavirus 2019 (COVID-19) as pandemic to January 2022. The presence and location of mutations were then investigated by aligning the sequences to the reference sequence and categorizing them based on frequency and continent. Finally, the related human genes with the viral structural genes were discovered, and their interactions were reported. RESULTS: The results indicated that the most relative mutations among the E, M, N, and S AASs occurred in the regions of 7 to 14, 66 to 88, 164 to 205, and 508 to 635 AAs, respectively. The most frequent mutations in E, M, N, and S proteins were T9I, I82T, R203M/R203K, and D614G. D614G was the most frequent mutation in all six geographical areas. Following D614G, L18F, A222V, E484K, and N501Y, respectively, were ranked as the most frequent mutations in S protein globally. Besides, A-kinase Anchoring Protein 8 Like (AKAP8L) was shown as the linkage unit between M, E, and E cluster genes. CONCLUSION: Screening the structural protein mutations can help scientists introduce better drug and vaccine development strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Nucleocápside
6.
bioRxiv ; 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35923310

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unsegmented positivesense single-stranded RNA virus that belongs to the ß-coronavirus . This virus was the cause of a novel severe acute respiratory syndrome in 2019 (COVID-19) that emerged in Wuhan, China at the early stage of the pandemic and rapidly spread around the world. Rapid transmission and reproduction of SARS-CoV-2 threaten worldwide health with a high mortality rate from the virus. According to the significant role of non-structural protein 1 (NSP1) in inhibiting host mRNA translation, this study focuses on the link between amino acid sequences of NSP1 and alterations of them spreading around the world. The SARS-CoV-2 NSP1 protein sequences were analyzed and FASTA files were processed by Python language programming libraries. Reference sequences compared with each NSP1 sample to identify every mutation and categorize them were based on continents and frequencies. NSP1 mutations rate divided into continents were different. Based on continental studies, E87D in global vision and also in Europe notably increased. The E87D mutation has significantly risen especially in the last months of the study as the first frequent mutation observed. The remarkable mutations, H110Y and R24C, have the second and third frequencies, respectively. Based on this mutational information, despite NSP1 being a conserved sequence occurrence, these mutations change the rate of flexibility and stability of the NSP1 protein, which can eventually affect inhibiting the host translation. IMPORTANCE: In this study, we analyzed 6,510,947 sequences of non-structural protein 1 as a conserved region of SARS-CoV-2. According to the obtained results, 93.4819% of samples had no mutant regions on their amino acid sequences. Heat map data of mutational samples demonstrated high percentages of mutations that occurred in the region of 72 to 126 amino acids indicating a hot spot region of the protein. Increased rates of E87D, H110Y, and R24C mutations in the timeline of our study were reported as significant compared to available mutant samples. Analyzing the details of replacing amino acids in the most frequent E87D mutation reveals the role of this alteration in increasing molecule flexibility and destabilizing the structure of the protein.

7.
bioRxiv ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35898341

RESUMEN

The high mutation rates of RNA viruses, coupled with short generation times and large population sizes, allow viruses to evolve rapidly and adapt to the host environment. The rapidity of viral mutation also causes problems in developing successful vaccines and antiviral drugs. With the spread of SARS-CoV-2 worldwide, thousands of mutations have been identified, some of which have relatively high incidences, but their potential impacts on virus characteristics remain unknown. The present study analyzed mutation patterns, SARS-CoV-2 AASs retrieved from the GISAID database containing 10,500,000 samples. Python 3.8.0 programming language was utilized to pre-process FASTA data, align to the reference sequence, and analyze the sequences. Upon completion, all mutations discovered were categorized based on geographical regions and dates. The most stable mutations were found in nsp1(8% S135R), nsp12(99.3% P323L), nsp16 (1.2% R216C), envelope (30.6% T9I), spike (97.6% D614G), and Orf8 (3.5% S24L), and were identified in the United States on April 3, 2020, and England, Gibraltar, and, New Zealand, on January 1, 2020, respectively. The study of mutations is the key to improving understanding of the function of the SARS-CoV-2, and recent information on mutations helps provide strategic planning for the prevention and treatment of this disease. Viral mutation studies could improve the development of vaccines, antiviral drugs, and diagnostic assays designed with high accuracy, specifically useful during pandemics. This knowledge helps to be one step ahead of new emergence variants.

9.
BMC Bioinformatics ; 22(1): 261, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030624

RESUMEN

BACKGROUND: Moonlighting proteins (MPs) are a subclass of multifunctional proteins in which more than one independent or usually distinct function occurs in a single polypeptide chain. Identification of unknown cellular processes, understanding novel protein mechanisms, improving the prediction of protein functions, and gaining information about protein evolution are the main reasons to study MPs. They also play an important role in disease pathways and drug-target discovery. Since detecting MPs experimentally is quite a challenge, most of them are detected randomly. Therefore, introducing an appropriate computational approach to predict MPs seems reasonable. RESULTS: In this study, we introduced a competent model for detecting moonlighting and non-MPs through extracted features from protein sequences. We attempted to set up a well-judged scheme for detecting outlier proteins. Consequently, 37 distinct feature vectors were utilized to study each protein's impact on detecting MPs. Furthermore, 8 different classification methods were assessed to find the best performance. To detect outliers, each one of the classifications was executed 100 times by tenfold cross-validation on feature vectors; proteins which misclassified 90 times or more were grouped. This process was applied to every single feature vector and eventually the intersection of these groups was determined as the outlier proteins. The results of tenfold cross-validation on a dataset of 351 samples (containing 215 moonlighting and 136 non-moonlighting proteins) reveal that the SVM method on all feature vectors has the highest performance among all methods in this study and other available methods. Besides, the study of outliers showed that 57 of 351 proteins in the dataset could be an appropriate candidate for the outlier. Among the outlier proteins, there were non-MPs (such as P69797) that have been misclassified in 8 different classification methods with 16 different feature vectors. Because these proteins have been obtained by computational methods, the results of this study could reduce the likelihood of hypothesizing whether these proteins are non-moonlighting at all. CONCLUSIONS: MPs are difficult to be identified through experimentation. Using distinct feature vectors, our method enabled identification of novel moonlighting proteins. The study also pinpointed that a number of non-MPs are likely to be moonlighting.


Asunto(s)
Aprendizaje Automático , Proteínas , Fenómenos Fisiológicos Celulares , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...